Hi I was wondering if somebody could tell me how to find the least significant decimal digit of a large number - like how would i step through it and is there and algorithm numbers like this in general

eg 1002^3755

Printable View

- Jan 7th 2009, 02:06 PMpablo26lest significant digit
Hi I was wondering if somebody could tell me how to find the least significant decimal digit of a large number - like how would i step through it and is there and algorithm numbers like this in general

eg 1002^3755 - Jan 7th 2009, 11:40 PMConstatine11
The least significant digit of $\displaystyle N$ is $\displaystyle N \pmod {10}$.

So in the case of your example:

$\displaystyle 1002^{3755}\equiv 2^{3755} \pmod{10}$

Now (you should know this) $\displaystyle 2^{10}=1024$

so:

$\displaystyle

2^{3755}=(2^{10})^{375}2^5\equiv 4^{375} \times 2 \pmod{10}

$

$\displaystyle

4^{375} \times 2=2^{751}=(2^{10})^{75} \times 2 \equiv 4^{75} \times 2 \pmod{10}

$

$\displaystyle

4^{75} \times 2=2^{151}=(2^{10})^{15} \times 2 \equiv 4^{15} \times 2 \pmod{10}

$

$\displaystyle

4^{15} \times 2=2^{31}=(2^{10})^3 \times 2\equiv 4^3 \times 2 \pmod{10}

$

and:

$\displaystyle

4^3 \times 2=128 \equiv 8 \pmod{10}

$

Hence:

$\displaystyle 1002^{3755}\equiv 8 \pmod{10}$

and so the least significant digit of $\displaystyle 1002^{3755}$ is $\displaystyle 8$.

.