Hi all,

I am kind of stuck with these proofs, which seemingly involve FLT ultimately. Since they're more or less related, I'm posting all three:

Let a be some integer. Prove that (let == be the symbol for congruence):

- a^21 == a (mod 15)

- a^7 == a (mod 42)

- if gcd(a,35) = 1 (i.e., a and 35 arecoprimes), then a^12 == 1 (mod 35)

After tinkering with the problems a bit, I suspect that the solution involves the GCD of the exponent and the modulus. So, more specifically, I'd like help specially in rewriting the congruences so that the modulus is prime, while keeping it true. That the modulus is prime is obviously required by the FLT hypotesis.

Any help or tip for one or more of the proofs will be greatly appreciated. Thanks in advance.