Let a,m be integers with m>0, gcd(a,m)=1 and gcd(a-1,m)=1. Prove that a^(phi(m)-1)+a^(phi(m)-2)+...+a^2+a+1 = 0 mod m
Follow Math Help Forum on Facebook and Google+
Hello, (a^(phi(m)-1)+a^(phi(m)-2)+...+a^2+a+1)(a-1)=a^(phi(m))-1. Now, divide by a-1 (which is prime relative to m.) Bye.
View Tag Cloud