Hello,

Could you please direct me to a website where I can learn stuff to solve the following type questions.

2 Let Z_2 ={0,1}denote the field of integers mod 2.

Show that the polynomial x^3+x+1 is irreducible over Z_2.

Hence construct a field with eight elements. (You should write down the addition

and multiplication tables of your field.)

3 Prove that the polynomial f (x) = x^2+x+1 is irreducible over Z_5. Hence construct

a field F with 25 elements which extends Z_5. Does the polynomial g(x) = x^2+2 have

a zero in F? In other words, you need to find all the solutions (if any) to the equation

x^2+2 = 0

in F.