Results 1 to 5 of 5

Math Help - Let n be an integer greater than one. Prove that n is a perfect square i.f.f. ...

  1. #1
    Member
    Joined
    Oct 2009
    From
    Detroit
    Posts
    157
    Thanks
    5

    Let n be an integer greater than one. Prove that n is a perfect square i.f.f. ...

    Let n be an integer greater than one. Prove that n is a perfect square i.f.f. n's prime factorization, n=p_1*p_2*...*p_r, has only even exponents.

    So I think I'm doing an analytical proof that establishes a biconditional with reference to the above statement.

    By definition a perfect square is a number, n, such that n=m^2x=(m^x)^2 and after substituting,



    I need to show that each exponent on a prime is even and I'm not entirely sure how to do this at the moment.

    I don't think I can just go straight to



    since I would need some kind of condition that requires each exponent to be an integer (maybe?) and that 2 divides any a with no remainder?

    The proof of the other direction, from each prime factor having even exponents to n being a perfect square, is done already.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor

    Joined
    Aug 2006
    Posts
    18,617
    Thanks
    1581
    Awards
    1

    Re: Let n be an integer greater than one. Prove that n is a perfect square i.f.f. ...

    Quote Originally Posted by bkbowser View Post
    Let n be an integer greater than one. Prove that n is a perfect square i.f.f. n's prime factorization, n=p_1*p_2*...*p_r, has only even exponents.

    So I think I'm doing an analytical proof that establishes a biconditional with reference to the above statement.

    By definition a perfect square is a number, n, such that n=m^2x=(m^x)^2 and after substituting,



    I need to show that each exponent on a prime is even and I'm not entirely sure how to do this at the moment.

    I don't think I can just go straight to



    since I would need some kind of condition that requires each exponent to be an integer (maybe?) and that 2 divides any a with no remainder?

    The proof of the other direction, from each prime factor having even exponents to n being a perfect square, is done already.
    In any prime factorization each exponent is an integer. If p is prime then the \sqrt p is irrational.

    Does that not tell you that the exponents must be even?
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Member
    Joined
    Oct 2009
    From
    Detroit
    Posts
    157
    Thanks
    5

    Re: Let n be an integer greater than one. Prove that n is a perfect square i.f.f. ...

    Quote Originally Posted by Plato View Post
    In any prime factorization each exponent is an integer. If p is prime then the \sqrt p is irrational.

    Does that not tell you that the exponents must be even?
    I'm not sure I follow, or now that I think of it that this proof will work out, at least not the way I was thinking. I was hoping that the product of the of distinct primes and irrationals would be irrational but that's not true(?). Or at least way harder to show then I want to get into.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Member
    Joined
    Oct 2009
    From
    Detroit
    Posts
    157
    Thanks
    5

    Re: Let n be an integer greater than one. Prove that n is a perfect square i.f.f. ...

    OK I think I can work it out this way;

    If n is a perfect square then it has the form of some integer, m, times itself.



    By the Fundamental Theorem of Arithmetic n has a unique factorization into distinct primes up to order.



    Since by definition a perfect square is some number times itself I have to be able to group the factors if n into two equal groups.



    For any given a, if that a is even then it is perfectly divisible by two and so can be split into two equal groups.

    For any given a, if that a is odd then it is not perfectly divisible into two groups. From which there are two cases;

    Either you have integer exponents and unequal groupings, in which case A does not equal A and there is a contradiction with the definition of a perfect square.

    Or, you have fractional exponents in equal groupings. In other words each grouping, A, contains at least one root and possibly more. Since each A is a grouping of distinct primes it is not that case that,



    Where N is an integer.

    Right here I want to say "As a perfect square is the square of an integer and as A can not be an integer, there is a contradiction if there is at least one odd exponentiation on a prime factor of n." I am however not entirely sure that the product of distinct primes and some variable number of roots of primes is not an integer.

    Like the standard counter example to the claim that "The product of two irrational numbers is irrational" is that of,



    which is of course not the case here since we're taking about the product of distinct primes with fractional exponents.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    MHF Contributor

    Joined
    Mar 2011
    From
    Tejas
    Posts
    3,386
    Thanks
    751

    Re: Let n be an integer greater than one. Prove that n is a perfect square i.f.f. ...

    If we have:

    n = m^2

    and:

    n = p_1^{r_1}p_2^{r_2}\cdots p_k^{r_k}

    (it is typical to insist that: p_1 < p_2 < \cdots < p_k to avoid questions of "re-ordering" and also to leave out the special case n= 1),

    then for each p_j which is prime, we certainly have p_j|n and then because n = m\ast m, and p_j is PRIME, it divides one of m or m, that is to say, it divides m.

    Since p_j divides m, some highest positive power of it divides m. let's say this power is (p_j)^t. Thus:

    \frac{m}{(p_j)^t} is an integer, which p_j does NOT divide.

    Thus \frac{n}{(p_j)^{2t}} is likewise an integer that p_j does not divide.

    By the uniqueness of the prime factorization for this integer, we have:

    \frac{n}{(p_j)^{2t}} = p_1^{r_1}\cdots (p_{j-1})^{r_{j-1}}(p_{j+1})^{r_{j+1}}\cdots p_k^{r_k}

    and cross-multiplication gives:

    n = p_1^{r_1}\cdots (p_{j-1})^{r_{j-1}}(p_j)^{2t}(p_{j+1})^{r_{j+1}}\cdots p_k^{r_k}

    so again by the uniqueness of prime factorization for n, we have:

    (p_j)^{2t} = (p_j)^{r_j}

    and uniqueness of factorization for THIS number forces:

    2t = r_j

    that is, r_j is even, for every j.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Prove that the expression is a perfect square
    Posted in the Advanced Algebra Forum
    Replies: 3
    Last Post: October 2nd 2013, 09:25 PM
  2. Replies: 3
    Last Post: August 1st 2012, 07:50 AM
  3. Replies: 2
    Last Post: October 8th 2010, 05:37 AM
  4. Replies: 1
    Last Post: July 21st 2010, 02:24 PM
  5. Replies: 2
    Last Post: February 5th 2009, 02:27 PM

Search Tags


/mathhelpforum @mathhelpforum