How do I convert 2,000 from decimal to hexadecimal?
USE THE WEB. See this webpage.
It helps if you think of the columns in your hexadecimal number as powers of 16, so your first digit will represent how many lots of $\displaystyle \displaystyle \begin{align*} 16^0 \end{align*}$, the second digit will represent how many lots of $\displaystyle \displaystyle \begin{align*} 16^1 \end{align*}$, the third digit will represent how many lots of $\displaystyle \displaystyle \begin{align*} 16^2 \end{align*}$, etc. Notice that $\displaystyle \displaystyle \begin{align*} 16^2 = 256 \end{align*}$ and $\displaystyle \displaystyle \begin{align*} 16^3 = 4069 \end{align*}$, so that means in hexadecimal your number can only have three digits.
Now notice that $\displaystyle \displaystyle \begin{align*} \frac{2000}{16^2} = 7\,\frac{208}{16^2} \end{align*}$, so your $\displaystyle \displaystyle \begin{align*} 16^2 \end{align*}$ digit is $\displaystyle \displaystyle \begin{align*} 7 \end{align*}$. You are left with $\displaystyle \displaystyle \begin{align*} 208 \end{align*}$.
Now notice that $\displaystyle \displaystyle \begin{align*} \frac{208}{16} = 13 \end{align*}$, so your $\displaystyle \displaystyle \begin{align*} 16^1 \end{align*}$ digit will have to be a $\displaystyle \displaystyle \begin{align*} d \end{align*}$ (which is the 13th digit).
Since there is no remainder, your $\displaystyle \displaystyle \begin{align*} 16^0 \end{align*}$ term has to be $\displaystyle \displaystyle \begin{align*} 0 \end{align*}$.
Therefore $\displaystyle \displaystyle \begin{align*} 2000_{10} = 7d0_{16} \end{align*}$.
Also visit the site : How to Convert from Decimal to Hexadecimal: 9 Steps
16 divides into 2600 121 times with remainder 0. That means that 2600= 121(16)+ 0.
16 divides into 121 7 times with remainder 9. That means that 121= 7(16)+ 9.
Putting those together 2600= (7(16)+ 9)(16)+ 0= 7(16)^2+ 9(16)+ 0 so 2600 base 10 is 790 base 16.
Hello, Civy71!
How do I convert 2,000 from decimal to hexadecimal?
There is an algorithm which no one has mentioned.
[1] Divide the number by the base. .Note the quotient and remainder.
[2] Divide the quotient by the base. .Note the quotient and remainder.
[3] Repeat step [2] until the zero quotient is attained.
[4] Read up the remainders.
. . $\displaystyle \begin{array}{cccccc} 2000 \div 16 &=& 125 & \text{rem. }0 \\ 125 \div 16 &=& 7 & \text{rem. }13 \\ 7 \div 16 &=& 0 & \text{rem. }7 \end{array}\begin{array}{c}\uparrow \\ \uparrow \end{array}$
Therefore: .$\displaystyle 2000_{10} \;=\;7D0_{16}$