Hello.

If n is a positive integer, show that the equation $\displaystyle \sigma(x)=n$ has a finite number of solutions.

Thanks.

PD: $\displaystyle \sigma(n)=\prod_{i=1}^k{\frac{p_i^{n_i+1}-1}{p_i-1}}$

Printable View

- Apr 13th 2012, 06:19 AMFernandoTau function
Hello.

If n is a positive integer, show that the equation $\displaystyle \sigma(x)=n$ has a finite number of solutions.

Thanks.

PD: $\displaystyle \sigma(n)=\prod_{i=1}^k{\frac{p_i^{n_i+1}-1}{p_i-1}}$