Originally Posted by

**letitbemww** I think I figured it out but I'm not sure if it was what you were hinting at, Plato. So because of the Fundamental Theorem of Arithmetic, every integer can be represented as the product of distinct prime numbers. This tells us that the primes are distinct in the product. Also, since 1 is a perfect square factor of every integer, this is true. I also know that the exponent of the prime factors can be represented as 2x+y where x is an integer and y is either 1 or 0 depending on whether the exponent is odd or even. This makes every prime factor be of the form p^(2x+y) = ((p^x)^2)*(p^y) which is a product of a perfect square and a prime. Is this right?