# Thread: How many divisors does the product have?

1. ## How many divisors does the product have?

If p and q are prime numbers, how many divisors does the product $p^3*q^6$ have?

Prime factorization would suggest that the answer is 18, but apparently it is 28. Please explain. Thanks.

2. ## Re: How many divisors does the product have?

Originally Posted by skyd171
If p and q are prime numbers, how many divisors does the product $p^3*q^6$ have?

Prime factorization would suggest that the answer is 18, but apparently it is 28. Please explain. Thanks.
You forgot the cases $1,p,\cdots,p^3,q,\cdots,q^6$. In general $\sigma_0(p^nq^m)=(n+1)(m+1)$, recall that $\sigma_0$ is multiplicative and $\sigma_0(p^n)=n+1$.

3. ## Re: How many divisors does the product have?

wonderful. Is it correct that the sigma, in this context, means "the number of unique divisors of"?

4. ## Re: How many divisors does the product have?

Originally Posted by skyd171
wonderful. Is it correct that the sigma, in this context, means "the number of unique divisors of"?
I don't know what unique divisor means, but it is the number of divisors, it is a special case of the more general divisor function.