Results 1 to 3 of 3

Thread: the sum of a^m

  1. #1
    Junior Member
    Joined
    Jan 2011
    Posts
    46

    the sum of a^m

    if we have any positive integer m ,
    the sum of a^m = -1 if (q-1)|m or 0 otherwise.
    Note, the sum is over a belongs to Fq , where Fq is a field.
    I appreciate your help,
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Banned
    Joined
    Oct 2009
    Posts
    4,261
    Thanks
    3
    Quote Originally Posted by Mike12 View Post
    if we have any positive integer m ,
    the sum of a^m = -1 if (q-1)|m or 0 otherwise.
    Note, the sum is over a belongs to Fq , where Fq is a field.
    I appreciate your help,


    Hint: 1) $\displaystyle \displaystyle{(q-1)\mid m\Longrightarrow m=t(q-1)\Longrightarrow \sum\limits_{a\in\mathbb{F}_q}a^m=\sum\limits_{a\i n\mathbb{F}_q}(a^{q-1})^t}$

    2) $\displaystyle \displaystyle{(q-1)\nmid m\Longrightarrow m=t(q-1)+r\,,\,\,0<r<q-1\Longrightarrow \sum\limits_{a\in\mathbb{F}_q}a^m=\sum\limits_{a\i n\mathbb{F}_q}(a^{q-1})^t\cdot a^s}$ .

    But there exists $\displaystyle b\in\mathbb{F}_q,\,\,s.t.\,\,b^s\neq 1$ (why?), so

    $\displaystyle \displaystyle{b^s\sum\limits_{a\in\mathbb{F}_q}a^s =\sum\limits_{a\in\mathbb{F}_q}(ba)^m$ , and since we have a group here the last sum runs over

    all the elements of $\displaystyle \mathbb{F}_q^*$ and zero, so $\displaystyle \displaystyle{b^s\sum\limits_{a\in\mathbb{F}_q}a^m =\sum\limits_{a\in\mathbb{F}_q}a^m}$ , thus...

    Tonio
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Junior Member
    Joined
    Jan 2011
    Posts
    46
    Thanks Tonio,
    Follow Math Help Forum on Facebook and Google+

Search Tags


/mathhelpforum @mathhelpforum