Originally Posted by
jstarks44444 Let (d sub k) from k=1 to inf be a sequence of digits.
So $\displaystyle \{d_k\}_{k=1}^\infty\,,\,\,d_k=0,1,2,...,9\,\,\for all k$
Then
Summation from j=1 to inf { (d sub j) * (10^-j) } converges.
Then $\displaystyle \displaystyle{\sum\limits^\infty_{k=1}\frac{d_k}{1 0^k}}$ converges
Any idea on how to complete this proof? Any help is appreciated!