Find a counterexample to the following assertion:

Every odd number can be expressed as the sum of a power of 2 and a prime.

Printable View

- Sep 28th 2010, 09:11 PMMATNTRNGCounterexample Help
Find a counterexample to the following assertion:

Every odd number can be expressed as the sum of a power of 2 and a prime. - Sep 28th 2010, 09:18 PMProve It
What about 5?

- Sep 28th 2010, 09:38 PMchisigma
5=2+3... and 3 is prime...

Kind regards

$\displaystyle \chi$ $\displaystyle \sigma$ - Sep 28th 2010, 09:40 PMundefined
- Sep 28th 2010, 09:48 PMProve It
- Oct 4th 2010, 08:32 AMchisigma
The smallest odd number > 1 that can't be written as the sum of a power of 2 and a prime number is 127...

127-1= 126= 2 x 7 x 9

127-2 = 125 = 5 x 5 x 5

127-4 = 123 = 3 x 41

127 - 8 = 119 = 7 x 17

127 - 16 = 111 = 3 x 37

127 - 32 = 95 = 5 x 19

127 - 64 = 63 = 3 x 3 x 7

Kind regards

$\displaystyle \chi$ $\displaystyle \sigma$ - Oct 5th 2010, 04:26 AMchisigma
There are seventeen odd numbers >1 and <1000 that can't be written as the sum of a power of 2 and a prime number:

127,149,251,331,337,373,509,599,701,757,809,877,90 5,907,959,977,997...

Kind regards

$\displaystyle \chi$ $\displaystyle \sigma$ - Oct 5th 2010, 08:24 AMwonderboy1953