If $\displaystyle n!$ has 58 trailing zeros, what is n?

$\displaystyle \left \lfloor \frac{n}{5} \right \rfloor + \left \lfloor \frac{n}{25} \right \rfloor + \dots + \left \lfloor \frac{n}{5^i} \right \rfloor=58$ where $\displaystyle i=1,2,...,j$

I don't know what to do next.