let $\displaystyle n,a$ be positive integers $\displaystyle p$ be prime with $\displaystyle a<p$

if $\displaystyle n \equiv a\mod(p^3)$ is squarefree

then

$\displaystyle \phi(n) \not\equiv a \mod(p^2)$

Printable View

- Feb 1st 2010, 04:00 AMwauwauEuler totient function
let $\displaystyle n,a$ be positive integers $\displaystyle p$ be prime with $\displaystyle a<p$

if $\displaystyle n \equiv a\mod(p^3)$ is squarefree

then

$\displaystyle \phi(n) \not\equiv a \mod(p^2)$ - Feb 1st 2010, 09:22 AMwonderboy1953Question
Is this a problem or your observation?

- Feb 1st 2010, 09:33 AMwauwauThis is to prove!!!
Show that

if...

then...