$\displaystyle \sum {\frac{1}{n^{1+\epsilon}}} $ from n = 1 to infinity
for some 0 < $\displaystyle \epsilon $ < 1. Determine for which values of $\displaystyle \epsilon $ the series converges or diverges.
$\displaystyle \sum {\frac{1}{n^{1+\epsilon}}} $ from n = 1 to infinity
for some 0 < $\displaystyle \epsilon $ < 1. Determine for which values of $\displaystyle \epsilon $ the series converges or diverges.
Read all of this: Harmonic series (mathematics) - Wikipedia, the free encyclopedia