$\displaystyle \sum {\frac{1}{n^{1+\epsilon}}} $ from n = 1 to infinity

for some 0 < $\displaystyle \epsilon $ < 1. Determine for which values of $\displaystyle \epsilon $ the series converges or diverges.

- Jan 2nd 2010, 04:30 AMAerospankThis problem is about a summation series...determine when it diverges or converges
$\displaystyle \sum {\frac{1}{n^{1+\epsilon}}} $ from n = 1 to infinity

for some 0 < $\displaystyle \epsilon $ < 1. Determine for which values of $\displaystyle \epsilon $ the series converges or diverges. - Jan 3rd 2010, 12:18 PMmr fantastic
Read all of this: Harmonic series (mathematics) - Wikipedia, the free encyclopedia

- Jan 21st 2010, 01:16 PMAerospank