Results 1 to 3 of 3

Math Help - 11111...1

  1. #1
    Junior Member Singular's Avatar
    Joined
    Dec 2006
    From
    Solo, Java
    Posts
    57

    11111...1

    Prove that

    <br />
\underbrace {11111.......1}_{n1's} = \frac{{10^n  - 1}}{9};For{\rm  }n \ge 1<br />

    ans:

    for n=k ---> <br />
\underbrace {11111.......1}_{k1's} = \frac{{10^k  - 1}}{9}<br />

    for n=k+1-----> <br />
10(\underbrace {11....1}_{k1's}) + 1 = 10(\frac{{10^k  - 1}}{9}) + 1 = \frac{{10^{k + 1}  - 10}}{9} + \frac{9}{9} = \frac{{10^{k + 1}  - 1}}{9}<br />

    Is it right ?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,907
    Thanks
    765
    Hello, Singular!

    Prove that: . \underbrace {111 \cdots1}_{n\,1's} \;= \;\frac{10^n-1}{9},\;\text{for }n \ge 1

    Answer

    for n = k\!:\;\underbrace{11111 \cdots1}_{k\,1's} \;= \;\frac{10^k-1}{9}

    for n=k+1\!:\;10(\underbrace {111\cdots1}_{k\,1's}) + 1 \;= \;10\left(\frac{10^k-1}{9}\right) + 1 \;= \frac{10^{k+1}-10}{9} + \frac{9}{9} \;=\; \frac{10^{k+1}-1}{9}

    Is it right ?

    Looks good to me . . . nice work!

    Follow Math Help Forum on Facebook and Google+

  3. #3
    Grand Panjandrum
    Joined
    Nov 2005
    From
    someplace
    Posts
    14,972
    Thanks
    4
    Quote Originally Posted by Singular View Post
    Prove that

    <br />
\underbrace {11111.......1}_{n1's} = \frac{{10^n - 1}}{9};For{\rm }n \ge 1<br />
    For all  n \ge 1 the lefthand side is:

    <br />
\sum_0^{n-1} 10^n<br />

    which is a geometric series with sum: (1-10^n)/(1-10)=(10^n-1)/9

    RonL
    Follow Math Help Forum on Facebook and Google+


/mathhelpforum @mathhelpforum