o I'm working on this problem for my Econ class, but it's so difficult. Hopefully someone can give me a few pointers as too where to start.

A manager of an automobile dealership must decide how many cars to order for the new model year in order to maximize his profit. There are two types of cars: midsize cars and compact cars. The selling price and costs are listed in the following table:

Car type -- Selling price -- Cost

Midsize -- $25,000 -- $18,178

Compact -- $18,000 -- $12,000

No more than $740,000 can be invested. The manager wants at least 10 of each type, but no more than 50 of the midsize cars and no more than 60 of the compact cars. (The manager assumes that as long as he meets these quantity limits, he will be able to sell all the cars that he orders.)

1.Formulate a linear programming model for this problem. That is, write out an algebraic statement of the model.

2.Create a spreadsheet model for this problem and solve it using Solver. What is the optimal solution and resulting profit?

3.The selling price of the midsize car might be as low as $22,000 or as high as $27,000. How does your solution found in #2 change with these prices?