Results 1 to 5 of 5

Math Help - resolve into factor

  1. #1
    Newbie
    Joined
    Feb 2013
    From
    Chittagong
    Posts
    2

    Question resolve into factor

    1. 2a2b2+2b2c2+2c2a2-a4-b4-c4
    2. a3+1/a3=18*31/2 ,prove that, x = 31/2 + 21/2
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,717
    Thanks
    634

    Re: resolve into factor

    Hello, rizwmun!

    \text{1. Factor: }\:2a^2b^2 + 2b^2c^2 + 2a^2c^2 - a^4 - b^4 - c^4

    (a+b+c)(a+b-c)(a-b+c)(-a+b+c)




    \text{Given: }\:x^3 + \frac{1}{x^3} \:=\:18\sqrt{3},\;\text{prove that: }\:x \:=\:\sqrt{3} + \sqrt{2}

    x^3 \;=\;(\sqrt{3}+\sqrt{2})^3 \;=\;3\sqrt{3} +3(3\!\cdot\!\sqrt{2}) + 3(\sqrt{3}\!\cdot\!2) + 2\sqrt{2} \;=\;9\sqrt{3}+11\sqrt{2}

    \frac{1}{x^3} \;=\;\frac{1}{9\sqrt{3}+11\sqrt{2}}\cdot {\color{blue}\frac{9 \sqrt{3}-11\sqrt{2}}{9\sqrt{3}-11\sqrt{2}}} \;=\; \frac{9\sqrt{3}-11\sqrt{2}}{243-242} \;=\;9\sqrt{3} - 11\sqrt{2}


    Therefore: . x^3 + \frac{1}{x^3} \;=\;\left(9\sqrt{3} + 11\sqrt{2}\right) + \left(9\sqrt{3} - 11\sqrt{2}\right) \;=\;18\sqrt{3}

    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Feb 2013
    From
    Chittagong
    Posts
    2

    Re: resolve into factor

    thanks for replay.....but for nunmer 2, I have to prove the last portion from first portion not by last portion.
    And I need whole procedure for number 1.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,717
    Thanks
    634

    Re: resolve into factor

    Hello agaibn, rizwmun!

    I have a method for #2 ... which is a bit devious.
    Perhaps someone else can find an elegant solution.


    \text{2. Given: }\,x^3+\frac{1}{x^3} \:=\:18\sqrt{3}\;\;{\color{blue}[1]}

    . . . \text{ Prove: }\,x \:=\:\sqrt{3}+\sqrt{2}

    Let x + \frac{1}{x} \:=\:a\;\;{\color{blue}[2]}

    Cube both sides: . \left(x + \frac{1}{x}\right)^3 \:=\:a^3 \quad\Rightarrow\quad x^3 + 3x + \frac{3}{x} + \frac{1}{x^3} \:=\:a^3

    . . . . . \left(x^3 + \frac{1}{x^3}\right) + 3\underbrace{\left(x + \frac{1}{x}\right)}_{\text{This is }a} \:=\:a^3 \quad\Rightarrow\quad x^3 + \frac{1}{x^3} + 3a \:=\:a^3

    . . . . . x^3+\frac{1}{x^3} \:=\:a^3 - 3a


    From [1], we have: . a^3 - 3a \:=\:18\sqrt{3} \quad\Rightarrow\quad a^3 - 3a - 18\sqrt{3} \:=\:0

    We find that the only real root is:. a \:=\:2\sqrt{3}


    Substitute into [2]: . x + \frac{1}{x} \:=\:2\sqrt{3} \quad\Rightarrow\quad x^2 - 2\sqrt{3}x + 1 \:=\:0

    Quadratic Formula: . x \;=\;\frac{2\sqrt{3} \pm\sqrt{(2\sqrt{3})^2 - 4(1)(1)}}{2(1)}

    . . . . . . . . . . . . . . . x\;=\;\frac{2\sqrt{3} \pm\sqrt{8}}{2} \;=\;\frac{2\sqrt{3}\pm2\sqrt{2}}{2}

    Therefore: . x \:=\:\sqrt{3} \pm\sqrt{2}
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Newbie
    Joined
    Feb 2013
    From
    xfcgfdgf
    Posts
    4

    Re: resolve into factor

    thanks for replay.....but for nunmer 2, I have to prove the last portion from first portion not by last portion.

    ______________________
    Find true love in The Tapout XT Fitness DVD and enjoy the moving time with them!
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Help me resolve this...
    Posted in the Algebra Forum
    Replies: 1
    Last Post: March 1st 2012, 07:41 PM
  2. Hey can someone help? I just can't resolve this problem !
    Posted in the Advanced Statistics Forum
    Replies: 4
    Last Post: February 2nd 2010, 05:32 PM
  3. Resolve into factors
    Posted in the Pre-Calculus Forum
    Replies: 2
    Last Post: December 8th 2009, 01:15 AM
  4. resolve in N...
    Posted in the Number Theory Forum
    Replies: 2
    Last Post: December 22nd 2008, 03:04 AM
  5. Resolve triangle
    Posted in the Trigonometry Forum
    Replies: 4
    Last Post: August 1st 2007, 02:07 PM

Search Tags


/mathhelpforum @mathhelpforum