# Thread: Need help with creating equations for solutions 1-100

1. ## Need help with creating equations for solutions 1-100

Goal: Use the digits of the year 1949 in order to create equations for solutions
1-100

Rules: The digits must be used in order

- You must
ie: the
solution to 1+9x9+4 is 86 not 94

-You may use the root of numbers to
create other numbers:
5! = 5x4x3x2x1 ( example )
5! = 120

If you
guys know any from 1-100 i would love your help!
I am also not sure if this
is posted in the correct locations, first time on the site

(A Few
Examples Below)

58 = 1x9+49=58
86= 1+94-9=86
41= 1x9+23+9 (23 is
from 4(!) 4x3x2x1)

2. ## Re: Need help with creating equations for solutions 1-100

1=1+4*(9-9)
2=4/(9/9+1)
3=4-1*9/9
4=4+9/9-1
5=4+1*9/9
6=4+9/9+1
7=9-(9-1)/4
8=(9/9+1)*4

12=9+9-(4-1)!
13=9+9-4-1
14=9+9-4*1
15=9+9+1-4

18=9*(4-1)-9

22=4!-9/9-1
23=4!*9/9-1
24=4!*9*1/9
25=4!*9/9+1
26=4!+9/9+1
27=4!*9/(9-1)
28=4*9-9+1

32=19+9+4
33=9*(1+4!/9)

37=9*(4+1/9)

39=49-9-1
40=49-9*1
41=49-9+1
42=41+9/9

45=(4-1)!*9-9

50=(9+1)*(9-4)

3. ## Re: Need help with creating equations for solutions 1-100

Im going to hit the thanks button anyways for all the hard work, but you can't go backwards (9491) you have to go 1949. I feel like I wasted some of your time, sorry !

4. ## Re: Need help with creating equations for solutions 1-100

Still need help ! Much appreciated if you guys can!

5. ## Re: Need help with creating equations for solutions 1-100

Some I have gotten recently!

19x4-9=67
19x4+9=85
1+94-9=86

6. ## Re: Need help with creating equations for solutions 1-100

Hi

I am sorry. I just realized that there is a rule that the digits must be used in order. In that case the number of those numbers you can get is much smaller. I will try getting more numbers but with digits in the order given.

Thank you !

8. ## Re: Need help with creating equations for solutions 1-100

Hello, hdarcticus!

Goal: Use the digits of the year $\displaystyle 1949$ in order to create equations for $\displaystyle 1 - 100.$

Rules: The digits must be used in order.
. . . . . You must follow the order of operations (BEDMAS) in creating your equations.

After a few hours of scribbling, I found these:

$\displaystyle \begin{array}{ccc} 1 &=& 1^{949} \\ 2&=& 1\times 9\times \sqrt{4} \div 9 \\ 3 &=& 1 + 9 + 4 - 9 \\ 4 &=& (1\times9\times4)\div 9 \\ 5 &=& 1 +9 + 4 - 9 \\ 6 &=& 19 - 4 - 9 \\ 7 &=& \text{-}1 + 9 + \sqrt{4} - \sqrt{9} \\ 8 &=& 1^9 \times (\sqrt{4})^{\sqrt{9}} \\ 9 &=& 1^9 + (\sqrt{4})^{\sqrt{9}} \\ 10 &=& (1-\sqrt{9})(4-9) \\ 11 &=& 1 + \sqrt{9} + \sqrt{49} \\ 12 &=& 19 + \sqrt{4} - 9 \\ 13 &=& 1^9 \times (4+9) \\ 14 &=& 19 + 4 - 9 \\ 15 &=& (\text{-}1)\times \sqrt{9} \times (4-9) \\ 16 &=& 1 + 9 + (\sqrt{4}\times\sqrt{9}) \\ 17 &=& 1 + 9 + \sqrt{49} \\ 18 &=& 19 + \sqrt{4} - \sqrt{9} \\ 20 &=& 19 + 4 - \sqrt{9} \\ 21 &=& 1 \times \sqrt{9}\times \sqrt{49} \\ 22 &=& (1\times 9) + 4 + 9 \end{array}$ . . . $\displaystyle \begin{array}{ccc}23 &=& 1+9+4+9 \\ 24 &=& 19 - 4 + 9 \\ 25 &=& 1 + 9 + 4! - 9 \\ 26 &=& \text{-}1 -9 + (4\times 9) \\27 &=& 1 \times (\sqrt{9})^{\sqrt{4}} \times \sqrt{9} \\ 28 &=& 1 - 9 + (4\times 9) \\ 32 &=& 19 + 4 + 9 \\ 36 &=& 1^9\times 4\times9 \\ 40 &=& (1-9)\times(4-9) \\ 41 &=& \text{-}1+9 + 4! + 9 \\ 42 &=& (1\times9) + 4! + 9 \\ 43 &=& 1 + 9 + 4! + 0 \\ 44 &=& \text{-}1 + 9 + (4\times 9) \\ 45 &=& (1\times 9) + (4\times 9) \\ 46 &=& 1 + 9 + (4\times 9) \\ 49 &=& (1+9)\times 4 + 9 \\54 &=& \text{-}1 - 9 + 4^{\sqrt{9}} \\ 55 &=& 19 + (4\times 9) \\ 56 &=& 1 - 9 + 4^{\sqrt{9}} \\ 58 &=& (1\times 9) + 49 \\ 59 &=& 1 + 9 + 49 \\ \end{array}$ . . . $\displaystyle \begin{array}{ccc}62 &=& \text{-}1 + (\sqrt{9}\times 4!) - 9 \\ 68 &=& 19 + 49 \\ 70 &=& 1 + (\sqrt{9}\times 4!) - 3 \\ 71 &=& \text{-}1 + 9^{\sqrt{4}} = 9 \\ 72 &=& \text{-}1 + 9 + 4^{\sqrt{9}} \\ 73 &=& 1 + 9^{\sqrt{4}} -9 \\ 74 &=& 1 + 9 + 4^{\sqrt{9}} \\ 76 &=& 1 + (\sqrt{9}\times 4!) + \sqrt{9} \\ 80 &=& \text{-}1 + (\sqrt{9}\times 4!) + 9 \\ 82 &=& 1 + (\sqrt{9}\times 4!) + 9 \\ 83 &=& \text{-}1 + 9^{\sqrt{4}} + \sqrt{9} \\ 84 &=& \text{-}1 + 94 - 9 \\ 85 &=& 1 + 9^{\sqrt{4}} + \sqrt{9} \\ 86 &=& 1 + 94 - 9 \\ 89 &=& \text{-}1 + 9^{\sqrt{4}} + 9 \\ 90 &=& \text{-}1 + 94 - \sqrt{9} \\ 91 &=& 1 + 9^{\sqrt{4}} + 9 \\ 96 &=& \text{-}1 + 94 + \sqrt{9} \\ 97 &=& 1\times 94 + \sqrt{9} \\ 98 &=& 1 + 94 + \sqrt{9} \end{array}$