Results 1 to 4 of 4

Math Help - physics

  1. #1
    Newbie
    Joined
    Sep 2008
    Posts
    19

    physics

    i need help on how to solve this problem

    a linear air track with length 1.5 m is inclined at an angle of 30.0 degrees with the horizontal. a glider of mass 25.3 g is released from the bottom of the track with an initial velocity of 3.0 m/s upward along the track. after reaching zero velocity, another glider of mass 30.5 g was released but this time from the top end of the air track. the initial velocity of the second glider is 9.0 m/s down along the air track. will the two gliders meet? if they will meet, at what distance from the bottom of the track will they meet? assume gliders as points and the linear air tracks as frictionless.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Member Last_Singularity's Avatar
    Joined
    Dec 2008
    Posts
    157
    Quote Originally Posted by maeca View Post
    i need help on how to solve this problem

    a linear air track with length 1.5 m is inclined at an angle of 30.0 degrees with the horizontal. a glider of mass 25.3 g is released from the bottom of the track with an initial velocity of 3.0 m/s upward along the track. after reaching zero velocity, another glider of mass 30.5 g was released but this time from the top end of the air track. the initial velocity of the second glider is 9.0 m/s down along the air track. will the two gliders meet? if they will meet, at what distance from the bottom of the track will they meet? assume gliders as points and the linear air tracks as frictionless.
    Please show us what you have done so far and let us know where you get stuck.

    I can start you off:

    1. The masses do not matter. How heavy a ball is does not change how fast it drops towards the ground.

    2. A change of coordinates will make your life a lot easier. Instead of working with the glider at an incline, pretend that you tilt your head so that the glider is horizontal from your point of view.

    3. The acceleration for a free-fall drop close to Earth is g (approximately 9.81 m/s). However, because the glider is inclined only by 30 degrees instead of the full 90, use sine of 30 as scaling factor in your accelerations.

    4. Set up two kinematic equations dictating each glider and calculate for the point where the two equations are equal (i.e. - the gliders meet)
    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor
    skeeter's Avatar
    Joined
    Jun 2008
    From
    North Texas
    Posts
    12,125
    Thanks
    1009
    acceleration for both gliders will be a constant, a = g\sin(30) = 4.9 \, m/s^2 down the track.

    the first cart will have a displacement of \Delta x = \frac{v_f^2 - v_0^2}{2a} = \frac{-9}{-9.8} = .92 \, m up the track.

    therefore, the second cart will be released when the first cart is 1.5 - .92 = .58 \, m down the track.

    taking the position of the second cart at the top of the track as 0, the position of the first cart as a function of time is ...

    x_1 = .58 + 4.9t^2

    the position of the second cart as a function of time is ...

    x_2 = 9.0t + 4.9t^2

    the meeting point will be when x_1 = x_2. set the two position functions equal to each other, solve for t, then determine the meeting position relative to the top of the track ... if it is \leq 1.5 , then the two carts will meet while they are both still on the track. finally, subtract the determined position from 1.5 to answer the desired question.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Newbie
    Joined
    Sep 2008
    Posts
    19

    thanks

    thanks so much
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Got a physics question or interested in physics?
    Posted in the Math Topics Forum
    Replies: 16
    Last Post: February 3rd 2014, 02:56 AM
  2. physics help...
    Posted in the Math Topics Forum
    Replies: 2
    Last Post: February 17th 2009, 07:20 AM
  3. how do solve quantum physics or physics equations
    Posted in the Advanced Applied Math Forum
    Replies: 2
    Last Post: March 26th 2008, 05:33 AM
  4. Physics...
    Posted in the Math Topics Forum
    Replies: 1
    Last Post: March 5th 2008, 08:31 PM
  5. physics, acceleration, physics problem
    Posted in the Math Topics Forum
    Replies: 3
    Last Post: September 29th 2007, 04:50 AM

Search Tags


/mathhelpforum @mathhelpforum