Results 1 to 3 of 3

Math Help - matrix question 1

  1. #1
    Faz
    Faz is offline
    Banned
    Joined
    Nov 2008
    Posts
    46

    matrix question 1



    .


    How to use row-reduce method to solve?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    o_O
    o_O is offline
    Primero Espada
    o_O's Avatar
    Joined
    Mar 2008
    From
    Canada
    Posts
    1,407
    \left[ \begin{array}{ccc|c}1 & 1 & 1 & 4 \\ 9 & 3 & 1 & 8 \\ 4 & -2 & 1 & 8 \end{array}\right]

    R_2  ' \rightarrow R_2 - 9 R_1 : \left[ \begin{array}{ccc|c}1 & 1 & 1 & 4 \\ 0 & -6 & -8 & -28 \\ 4 & -2 & 1 & 8 \end{array}\right]

    R_3 ' \rightarrow R_3 - 4R_1 : \left[ \begin{array}{ccc|c}1 & 1 & 1 & 4 \\ 0 & -6 & -8 & -28 \\ 0 & -6 & -3 & -8 \end{array}\right]

    R_3 ' \rightarrow R_3 - R_2 : \left[ \begin{array}{ccc|c}1 & 1 & 1 & 4 \\ 0 & -6 & -8 & -28 \\ 0 & 0 & 5 & 20 \end{array}\right]

    \begin{array}{rl} R_1 ' & \rightarrow R_1 + \frac{1}{6}R_2 \\ R_3 ' & \rightarrow \frac{1}{5} R_3 \end{array} : \left[ \begin{array}{ccc|c}1 & 0 & -\frac{1}{3} & -\frac{2}{3} \\ 0 & -6 & -8 & -28 \\ 0 & 0 & 1 & 4 \end{array}\right]

    Try finishing up. The idea is to make all entries 0's in each column besides the leading 1 by using the row containing the leading 1 of that column (you may want to re-read that). Usually starting from the left to the right does the job.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,802
    Thanks
    692
    Hello, Faz!

    Didn't I solve this one already?


    \left[\begin{array}{ccc|c}1&1&1&4 \\ 9&3&1&8 \\ 4&\text{-}2&1&8 \end{array}\right]
    I try to avoid fractions as much as possible . . .


    \begin{array}{c}\\R_2-9R_1 \\ R_3-4R_1\end{array}\left[\begin{array}{ccc|c}1&1&1&4 \\ 0&\text{-}6&\text{-}8&\text{-}28\\0&\text{-}6&\text{-}3&\text{-}8 \end{array}\right]


    \begin{array}{c}\\ \text{-}\frac{1}{2}R_2 \\ R_3-R_2\end{array} \left[\begin{array}{ccc|c}1&1&1&4 \\ 0&3&4&14 \\ 0&0&5&20 \end{array}\right]


    . . . \begin{array}{c}\\ \\ \frac{1}{5}R_3\end{array} \left[\begin{array}{ccc|c}1&1&1&4 \\ 0&3&4&14 \\ 0&0&1&4 \end{array}\right]


    \begin{array}{c}R_1-R_3\\R_2-4R_3 \\ \\ \end{array} \left[\begin{array}{ccc|c}1&1&0&0 \\ 0&3&0&\text{-}2 \\ 0&0&1&4\end{array}\right]


    . . . \begin{array}{c}\\ \frac{1}{3}R_2 \\ \\ \end{array} \left[\begin{array}{ccc|c}1&1&0&0 \\ 0&1&0&\text{-}\frac{2}{3} \\ 0&0&1&4 \end{array}\right]


    \begin{array}{c}R_1-R_2 \\ \\ \\ \end{array} \left[ \begin{array}{ccc|c}1&0&0&\frac{2}{3} \\ \\[-4mm] 0&1&0&\text{-}\frac{2}{3} \\ \\[-4mm] 0&0&1&4 \end{array}\right]


    Therefore: . \begin{Bmatrix}x &=& \frac{2}{3} \\ \\[-3mm] y &=& \text{-}\frac{2}{3} \\ \\[-3mm] z&=&4 \end{Bmatrix}


    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Matrix question
    Posted in the Pre-Calculus Forum
    Replies: 0
    Last Post: September 20th 2011, 06:04 PM
  2. Matrix question
    Posted in the Advanced Algebra Forum
    Replies: 5
    Last Post: January 24th 2011, 07:20 AM
  3. Matrix question
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: April 30th 2009, 06:11 PM
  4. matrix question 2
    Posted in the Algebra Forum
    Replies: 1
    Last Post: December 19th 2008, 05:12 PM
  5. Matrix Question
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: April 1st 2008, 12:46 PM

Search Tags


/mathhelpforum @mathhelpforum