show using truth tables, that the statement "if P then Q" is logically equivalent to the statement "not P or Q"

Printable View

- Dec 8th 2008, 08:34 AMana1808true tables urgent
show using truth tables, that the statement "if P then Q" is logically equivalent to the statement "not P or Q"

- Dec 8th 2008, 08:41 AMJhevon
fill out the table and observe that the truth values for both expressions are the same in each corresponding entry:

$\displaystyle \begin{array}{|c|c|c|c|c|}

\hline \bold{P} & \bold{Q} & \neg \bold{ P} & \bold{P} \implies \bold{Q} & \bold{\neg P \vee Q} \\

\hline T & T & & & \\

\hline T & F & & & \\

\hline F & T & & & \\

\hline F & F & & & \\

\hline \end{array}$ - Dec 8th 2008, 08:41 AMparticlejohn
Same as showing $\displaystyle P \implies Q $ is equivalent to $\displaystyle \neg P \vee Q $. Just look at the truth tables and see that they have the same values.