Let

-> -> -> ->

u = 3 i -2j + k

and

-> -> -> ->

v = 2i + j - k

-> ->

a)calculate the dot product of u and v

-> ->

a)calculate the cross product of u and v

-> ->

c)calculate 5 u - v

Results 1 to 5 of 5

- November 25th 2008, 07:26 AM #1

- Joined
- Nov 2008
- Posts
- 46

- November 25th 2008, 07:44 AM #2

- Joined
- Nov 2008
- Posts
- 82

hey mate,

In relation to (a), (b), for any two 3 Dimensional vectors of the form

v1 = a1*i + b1*j + c1*k, v2 = a2*i + b2*j + c2*k

Their Euclidean Inner or 'Dot' Product is calculated using either

(i) v1 . v2 = a1*a2 + b1*b2 + c1*c2

(ii) v1 . v2 = |v1|*|v2|*cos(y) where y is the angle between v1 and v2

Since the angle is unknown I would recommend using (i)

Their Cross Product is defined as,

v1 X v2 = det(A), where A is a 3x3 matrix where the first row of A = (i,j,k), the second row is v1 and the third is v2

For (c)

As before for a given three dimension vector of the form v1 (as defined previously)

Scalar Multiplication -

m*v1 = m(a1*i + b1*j + c1*k) = m*a1*i + m*b1*j + m*c*k

Addition

v1 + v2 = (a1 + a2)*i + (b1+b2)*j + (c1 + c2)*k

Hope this helps,

Let me know if you require any further assistance,

Regards,

David

- November 25th 2008, 08:21 AM #3

- Joined
- Nov 2008
- Posts
- 46

- November 25th 2008, 08:38 AM #4

- Joined
- May 2006
- From
- Lexington, MA (USA)
- Posts
- 11,749
- Thanks
- 650

- November 25th 2008, 05:17 PM #5

- Joined
- Nov 2008
- Posts
- 46