Results 1 to 4 of 4

Math Help - Problem solving - sucessive tetrahedral numbers

  1. #1
    Newbie
    Joined
    May 2008
    Posts
    12

    Problem solving - sucessive tetrahedral numbers

    would you guys be able to give me a hand with this problem solving question, i have no idea where to start...


    Thanks

    Zac
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,682
    Thanks
    614
    Hello, Zac!

    12. The first four tetrahedral numbers are: . 1,\;4,\;10,\;20

    Find the pattern, then predict the next 3 terms of the sequence.
    Take the difference of consecutive pairs of terms.


    \begin{array}{cccccccc}\text{Sequence:} & 1 && 4 && 10 && 20 \\<br />
\text{Difference:} & & 3 & & 6 & & 10 \end{array}


    They are adding on consecutive "triangular" numbers.

    . . \begin{array}{ccc}3 & = & 1+2 \\ 6 &=&1+2+3\\ 10 &=&1+2+3+4 \end{array}


    We will add on the next three triangular numbers:

    . . \begin{array}{ccc}1+2+3+4+5 &=& 15 \\ 1+2+3+4+5+6 &=& 21 \\ 1+2+3+4+5+6+7 &=& 28\end{array}



    \begin{array}{cccccccccccccc}\text{Sequence:} & 1 && 4 && 10 && 20 && {\color{blue}35} && {\color{blue}56} && {\color{blue}84}\\<br />
\text{Difference:} & & 3 & & 6 & & 10 && +15 && +21 && +28\end{array}



    What is the n^{th} term of the sequence?
    I'll skip all the algebra . . .

    \text{The }n^{th}\text{ term is: }\;a_n \;=\;\frac{n(n+1)(n+2)}{6}

    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    May 2008
    Posts
    12
    Quote Originally Posted by Soroban View Post

    I'll skip all the algebra . . .

    \text{The }n^{th}\text{ term is: }\;a_n \;=\;\frac{n(n+1)(n+2)}{6}
    as this is a problwm solving questions and according to my sheet i must show the algebra would you mind putting it up?

    thanks so much!

    Zac
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,682
    Thanks
    614
    Hello, Zac!

    This will take a while . . . better sit down.


    Take differences of consecutive terms,
    . . then take differences of the differences, and so on.

    \begin{array}{cccccccccccccc}\text{Sequence} & 1 && 4 && 10 && 20 && 35 && 56 && 84 \\<br />
\text{1st diff.} & & 3 && 6 && 10 && 15 && 21 && 28 \\<br />
\text{2nd diff.} & & & 3 && 4 && 5 && 6 && 7 \\<br />
\text{3rd diff.} & & & & 1 && 1 && 1 && 1 \end{array}

    The third differences are constant.
    . . This tells us that the generating fuction is a cubic.

    The general cubic function is: . f(n) \;=\;an^3 + bn^2 + cn + d


    We will use the first four terms of the sequence . . .

    \begin{array}{ccccc}f(1)\:=\:1\!: & a + b + c + d & = & 1 & [1] \\<br />
f(2) \:=\:4\!: & 8a + 4b + 2c + d &=& 4 & [2] \\ <br />
f(3) \:=\:10\!: & 27a + 9b + 3c + d &=& 10 & [3] \\<br />
f(4) \:=\:20\!: & 64a + 16b + 4c + d &=& 20 & [4] \end{array}

    \begin{array}{ccccc}\text{Subtract [2] - [1]:} & 7a + 3b + c &=& 3 & [5] \\<br />
\text{Subtract [3] - [2]:} & 19a + 5b + c &=& 6 & [6] \\<br />
\text{Subtract [4] - [3]:} & 37a + 7b + c &=& 10 & [7] \end{array}

    \begin{array}{ccccc}\text{Subtract [6] - [5]:} & 12a + 2b &=& 3 & [8] \\<br />
\text{Subtract [7] - [6]:} & 18a + 2b &=& 4 & [9] \end{array}

    \begin{array}{ccccccc}\text{Subtract [9] - [8]:}&  6a \;=\; 1 & \Rightarrow & \boxed{a \;=\;\frac{1}{6}} \end{array}

    Substitute into [8]: . 12\left(\frac{1}{6}\right) + 2b \:=\:3\quad\Rightarrow\quad\boxed{ b \:=\:\frac{1}{2}}

    Substitute into [5]: . 7\left(\frac{1}{6}\right) + 3\left(\frac{1}{2}\right) + c \:=\:3 \quad\Rightarrow\quad \boxed{c\:=\:\frac{1}{3}}

    Substitute into [1]: . \frac{1}{6} + \frac{1}{2} + \frac{1}{3} + d \:=\:1 \quad\Rightarrow\quad\boxed{ d\:=\:0}


    Hence, the function is: . f(n) \;=\;\frac{1}{6}n^3 + \frac{1}{2}n^2 + \frac{1}{3}n \;=\;\frac{n}{6}(n^2+3n+ 2)

    . . Therefore: . \boxed{f(n) \;=\;\frac{n(n+1)(n+2)}{6}}

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 4
    Last Post: March 5th 2011, 10:08 PM
  2. Solving Complex Numbers.
    Posted in the Calculus Forum
    Replies: 3
    Last Post: December 8th 2010, 09:58 PM
  3. Solving |e^z| using complex numbers
    Posted in the Pre-Calculus Forum
    Replies: 7
    Last Post: October 24th 2010, 06:10 AM
  4. Square numbers problem solving
    Posted in the Algebra Forum
    Replies: 6
    Last Post: March 15th 2010, 01:18 PM
  5. Proof of product rule for sucessive joint events
    Posted in the Advanced Statistics Forum
    Replies: 1
    Last Post: October 20th 2008, 10:31 AM

Search Tags


/mathhelpforum @mathhelpforum