Originally Posted by

**Soroban** Hello, cheyanne!

The first one is a classic problem . . .

Let $\displaystyle R$ = the radius of the Earth.

The length of the band is: .$\displaystyle 2\pi R $

Then the band is extended to: .$\displaystyle 2\pi R + 20$

Let $\displaystyle R + h$ = the radius of the larger circle.

Then we have: .$\displaystyle 2\pi(R + h) \;=\;2\pi R + 20\quad\Rightarrow\quad2\pi R + 2\pi h \:=\:2\pi R + 20$

. . $\displaystyle 2\pi h \:=\:20\quad\Rightarrow\quad h \:=\:\frac{10}{\pi} \:\approx\:3.18\;m$

This is over 10 feet . . . Yes, we can walk under it.