Results 1 to 3 of 3

Math Help - Vectors

  1. #1
    Junior Member
    Joined
    Aug 2013
    From
    UAE
    Posts
    33

    Vectors

    O(0,0,0), A(4,0,0), B(1,3,0) and C(1,1,2) are vertices of a parallelepiped having OA,OB and OC as concurrent edges. Forces of magnitudes 7, 2 and 4 act on a particle at O in the directions pointing towards A,B and C respectively. Determine the resultant force on the particle. What is the component of the resultant, along the diagonal of the parallelepiped.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor

    Joined
    Apr 2005
    Posts
    15,367
    Thanks
    1312

    Re: Vectors

    What exactly is your difficulty? It is difficult to know what suggestions would help if you don't show any work of your own.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Junior Member
    Joined
    Aug 2013
    From
    UAE
    Posts
    33

    Re: Vectors

    Well I know how to calculate the resultant by taking the unit vectors along the directions on which the forces are acting , multiplying them by the magnitude for the forces so that I get the 3 forces as 3 vectors and the resultant is just the addition of the 3 vectors.
    What I'm having the difficulty is getting the component of the resultant along the diagonal of the parallelepiped.
    I think I can get the component by taking the dot product of the resultant with the unit vector along the diagonal of the parallelpiped but I just cannot find a way to get the unit vector. Or is there any other easy way of doing it?
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 3
    Last Post: November 15th 2011, 05:10 PM
  2. Replies: 3
    Last Post: June 30th 2011, 08:05 PM
  3. Replies: 2
    Last Post: June 18th 2011, 10:31 AM
  4. [SOLVED] Vectors: Finding coefficients to scalars with given vectors.
    Posted in the Pre-Calculus Forum
    Replies: 2
    Last Post: January 23rd 2011, 12:47 AM
  5. Replies: 4
    Last Post: May 10th 2009, 06:03 PM

Search Tags


/mathhelpforum @mathhelpforum