Results 1 to 6 of 6

Math Help - Math Help..

  1. #1
    Newbie
    Joined
    Mar 2006
    Posts
    11

    Exclamation Math Help..

    1)

    5./ 2 (7./8+5./3)


    2)
    -3x-13>-4,D={Integers}


    3)

    (-2)
    ----
    -4

    5)

    (2010^-4)(410^9)
    --------------------
    3,20010^-3

    6)

    -(-{-[-(-64)]})

    7)
    Simplify:

    a-5ab+2a+ab+2ab

    8)

    Greatest Common Factor:
    8cdw^5-10c^6dw^10

    9)

    3x(2xy+4y)

    10)

    Solve:

    x-10=49
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,667
    Thanks
    298
    Awards
    1
    Quote Originally Posted by autopimp
    2)
    -3x-13>-4,D={Integers}


    3)

    (-2)
    ----
    -4
    2)
    -3x-13>-4
    -3x-13+13>-4+13
    -3x>9
    \frac{-3x}{-3}<\frac{9}{-3} Note the change in the > here!
    x<-3.

    3) \frac{-2}{-4}=\frac{-2}{2*-2}=s.

    What do the decimal points in the first problem mean?

    -Dan
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,667
    Thanks
    298
    Awards
    1
    Quote Originally Posted by autopimp
    5)

    (2010^-4)(410^9)
    --------------------
    3,20010^-3

    6)

    -(-{-[-(-64)]})
    5) \frac{2010^{-4}410^9}{320010^{-3}}=\frac{320010^3410^9}{2010^4}

    The prime factorizations of these are:
    2010=2*3*5*67
    410=2*5*41
    320010=2*3*5*10667

    So:
    \frac{320010^3410^9}{2010^4}=\frac{(2^33^35^310667  ^3)(2^95^941^9)}{2^43^45^467^4}
    \frac{2^{12}3^35^{12}41^910667^3}{2^43^45^467^4}= \frac{2^85^841^910667^3}{3*67^4}

    I'm not sure what else to do with it.

    6) -(-{-[-(-64)]})=(-1)^5*64=-64.

    -Dan
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,667
    Thanks
    298
    Awards
    1
    Quote Originally Posted by autopimp
    7)
    Simplify:

    a-5ab+2a+ab+2ab

    8)

    Greatest Common Factor:
    8cdw^5-10c^6dw^10
    7) First combine the like terms:
    a-5ab+2a+ab+2ab
    (a+2a)+(-5ab+ab+2ab)=3a-2ab
    Each term has a common a, so factor the a:
    3a-2ab=a(3-2b).

    8) 8cdw^5-10c^6dw^{10}
    I don't know what you mean by "greatest common factor," I suspect you simply mean to factor the expression.
    So, there is a common 2, one c, one d, and five w in each term:
    8cdw^5-10c^6dw^{10}=2cdw^5(4-5c^5w^5).

    -Dan
    Last edited by topsquark; March 7th 2006 at 02:02 PM. Reason: Typos!
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,667
    Thanks
    298
    Awards
    1
    Quote Originally Posted by autopimp
    9)

    3x(2xy+4y)

    10)

    Solve:

    x-10=49
    9) 3x(2xy+4y)=3x*2xy+3x*4y=6x^2y+12xy.

    10)
    x-10=49
    x-10+10=49+10
    x=59.

    -Dan
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,667
    Thanks
    298
    Awards
    1
    Quote Originally Posted by autopimp
    1)

    5./ 2 (7./8+5./3)
    I'm not sure of what the decimal points are for but my best guess is:
     \frac{5}{2} \left (\frac{7}{8}+\frac{5}{3} \right)
    \frac{5}{2} \left (\frac{7}{8} * \frac{3}{3} + \frac{5}{3} * \frac{8}{8} \right )
    \frac{5}{2} \left ( \frac{21}{24} + \frac{40}{24} \right )
    \frac{5}{2} \left ( \frac{21+40}{24} \right )
    \frac{5}{2} \left ( \frac{61}{24} \right )
    \frac{5*61}{2*24}=\frac{305}{48}.

    -Dan
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 0
    Last Post: May 29th 2011, 12:57 AM
  2. Replies: 2
    Last Post: February 14th 2011, 02:31 AM
  3. Replies: 1
    Last Post: June 19th 2010, 10:05 PM
  4. Replies: 1
    Last Post: June 2nd 2010, 09:49 AM
  5. Replies: 2
    Last Post: February 15th 2010, 03:09 PM

Search Tags


/mathhelpforum @mathhelpforum