Originally Posted by

**Soroban** Hello, Subliminalmessage!

You have invented a new (and incorrect) method of division.

This reminds me of an old Abbott and Costello routine.

Lou Costello insists that: $\displaystyle 5 \times 14 \,=\,25.$

Bud Abbott tries to correct him, but Lou "proves" it.

On a blackboard, he writes: .$\displaystyle \begin{array}{ccc}1&4 \\ \times & 5 \\ \hline \end{array}$

He says, "Five time four is twenty": . $\displaystyle \begin{array}{ccc}1&4 \\ \times & 5 \\ \hline 2 & 0 \end{array}$

Then "Five times one is five": .$\displaystyle \begin{array}{ccc}1&4 \\ \times &5 \\ \hline 2&0 \\ & 5 \end{array}$

And before Bud can object, Lou draws the line and adds: /$\displaystyle \begin{array}{cc}1&4 \\ \times & 5 \\ \hline 2 & 0 \\ & 5 \\ \hline 2 & 5 \end{array}$

"See?"

Bud says, "You can't multiply like that! .What if you add five 14's?"

Lou writes:. . $\displaystyle \begin{array}{ccc}&1&4 \\ &1&4 \\ &1&4 \\ &1&4 \\+ &1&4 \\ \hline \end{array}$

Bud takes the chalk and adds *up* the right column: "4, 8, 12, 16, 20 ..."

Lou pushes him aside and adds the *down* the left column: "21, 22, 23, 24, 25 !"

And has: .$\displaystyle \begin{array}{ccc}&1&4 \\ &1&4\\&1&4\\&1&4\\+&1&4\\ \hline & 2&5 \end{array}$

Bud complains again and asks "Okay, what is 25 divided by 5?"

Lou write: .$\displaystyle \begin{array}{cccc}&& - & - \\ 5 & ) & 2 & 5 \end{array}$

He says, "5 doesn't go into 2, but 5 goes into 5 once": .$\displaystyle \begin{array}{cccc}&&& 1 \\ && - & - \\ 5 & ) & 2 & 5 \end{array}$

"One times five is five": .$\displaystyle \begin{array}{cccc}&&&1 \\ && - & - \\ 5 & ) & 2 & 5 \\ &&&5 \end{array}$

"25 minus 5 is 20": .$\displaystyle \begin{array}{cccc}&&&1 \\ && - & - \\ 5 & ) & 2 & 5 \\ &&& 5 \\ &&- & - \\ && 2 & 0 \end{array}$

"And 5 goes into 20 four times": .$\displaystyle \begin{array}{ccccc}&&&1 & 4 \\ && - & - & - \\ 5 & ) & 2 & 5 \\ &&& 5 \\ & & - & - \\ & & 2 & 0 \\ && 2 & 0 \\ && - & - \\ \end{array}$

And Bud Abbott gives up . . .