I have been working on this problem for hours. I have been working on it on Google Docs with another user on this site for a while: https://docs.google.com/drawings/d/1...vre0Z6feA/edit
The problem: A small bead with a mass of 100g slides without friction along a semicircular wire with a radius of 10cm that is rotating about a vertical axis at a rate of 2.0 revolutions per second. Find the value of angle for which the bead will remain stationary relative to the rotating wire.
The answer: 52 degrees
Method: 1.588cos(theta) - the weight of the bead = 0 solve for theta
I'm not sure why that method works (gets the answer) and that's my biggest problem. I want to understand how this problem works.
This problem is difficult to understand without looking at the picture in the textbook. I drew the picture on the Google Docs link you may view. Tell me if you need any more information.
someone else explained this to me: It's the equation that omega is squared.
angular acceleration (a_c) is velocity-squared divided by R, which is equal to omega-squared times R.
He put the radius at the point of the bead in terms of R, the max radius of the circle with r = R*cos(theta)
Ny = N*sin(theta) = mg, because the normal force on the wire is equal to the only counter force in that direction: weight.
Thus, solving for N, we have N = mg/sin(theta)
Nx = Fc = m*a_c = m*r*(omega-squared) = m*R*cos(theta)*(omega-squared)