Originally Posted by

**mathsB** Hi, I'm relatively new to this forum but i hope you will be able to help me with my maths problems.

Problem1.) An ant is at one corner of a cube side length one unit. the ant needs to get from his corner to the corner on the opposite side of the cube (at the top of the cube not the bottom) he must stay on the outside of the cube (on the side or edges) as he cannot fly and the inside of the cube is an open space. What is the least distance he needs to travel to get to the other corner??

N.B. a student came up with a solution of 2.26 using Pythagoras' theorem by folding the side of the cube up and working it out in 2D . Your task is to prove this answer is correct using optimization of calculus.

(Any sort of formula would b a great help)