Results 1 to 3 of 3

Thread: Linear equation system

  1. #1
    Newbie
    Joined
    Feb 2010
    Posts
    12

    Linear equation system



    So... I've got the above linear equation system. I need to find alpha1 and alpha2, the rest is assumed as known. I was thinking of solving it by solving first equation for sina1 which equals to (x1-x2-d2*cosa2) / d1 and then substitute it into the second equation, but in order to do that I have to change it to cosa1. Looked through all the trigonometric identities, just can't find the solution... Any thoughts?

    Thanks!!!
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    12,028
    Thanks
    848
    Hello, crapmathematician!

    Too many subscripts . . . I'll simplify slightly.

    But then, I haven't finished the problem either . . .


    $\displaystyle \begin{array}{cccccc}
    x_1 - d_1\sin\alpha &=& x_2 + d_2\cos\beta & [1] \\
    y_1 - d_1\cos\alpha &=& y_2 + d_2\sin\beta & [2] \end{array}$

    Solve for $\displaystyle \alpha\text{ and }\beta.$
    $\displaystyle \begin{array}{ccccccc}
    \text{[1] becomes:} & d_1\sin\alpha + d_2\cos\beta & =& x_1-x_2 & [3] \\ \\[-3mm]
    \text{[2] becomes:} & d_1\cos\alpha + d_2\sin\beta &=& y_1-y_2 & [4] \end{array}$



    $\displaystyle \begin{array}{ccccccc}
    \text{Square [3]:} & d_1^2\sin^2\!\alpha + 2d_1d_2\sin\alpha\cos\beta + d_2^2\cos^2\!\beta &=& (x_1-x_2)^2 \\ \\[-3mm]
    \text{Square [4]:} & d_1^2\cos^2\!\alpha + 2d_1d_2\sin\beta\cos\alpha + d_2^1\sin^2\!\beta &=& (y_1-y_2)^2 \end{array}$


    $\displaystyle \text{Add: }\;d_1^2\underbrace{(\sin^2\!\alpha + \cos^2\!\alpha)}_{\text{This is 1}} + 2d_1d_2\underbrace{(\sin\alpha\cos\beta + \sin\beta\cos\alpha)}_{\text{This is }\sin(\alpha+\beta)} +$ .$\displaystyle d_2^2\underbrace{(\sin^2\!\beta + \cos^2\!\beta)}_{\text{This is 1}} \;=\;(x_1-x_2)^2 + (y_1-y_2)^2 $

    We have: . $\displaystyle d_1^2 + 2d_1d_2\sin(\alpha+\beta) + d_2^2 \;=\;(x_1-x_2)^2 + (y_1 - y_2)^2$

    Hence: . $\displaystyle \sin(\alpha + \beta) \;=\;\frac{(x_1-x_2)^2 + (y_1-y_2)^2 - (d_1^2 + d_2^1)}{2d_1d_2} $



    Multiply [3] times [4]:

    . . $\displaystyle d_1^2\sin\alpha\cos\alpha \;+\; d_1d_2\sin\alpha\sin\beta \;+\; d_1d_2\cos\alpha\cos\beta \;+\; d_2^2\sin\beta\cos\beta \;=\;(x_1-x_2)(y_1-y_2) $

    . . $\displaystyle d_1d_2\underbrace{(\cos\alpha\cos\beta \;+\; \sin\alpha\sin\beta)}_{\text{This is }\cos(\alpha - \beta)} \;+\; \underbrace{d_1^2\sin\alpha\cos\alpha \;+\; d_2^2\sin\beta\cos\beta}_{\text{But these don't combine!}} \;=\;(x_1-x_2)(y_1-y_2) $


    So I've hit a wall . . .

    The best I can do is:

    . . $\displaystyle d_1d_2\cos(\alpha - \beta) + \tfrac{1}{2}\left(d_1\sin2\alpha + d_2\sin2\beta\right) \;=\;(x_1-x_2)(y_1-y_2) $


    Any ideas?

    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Feb 2010
    Posts
    12

    Question

    OK... I have tried to substitute
    $\displaystyle
    sin\alpha_1 = \tfrac {x_1-x_2-d_2\cos\alpha_2}{d_1}
    $
    (which I got from equation 1 when extracting for $\displaystyle sin\alpha_1 $) into equation 2 by using a formula Sin(arccos x)=Cos(arcsinx)=sqrt(1-x^2). Thus I have put $\displaystyle 1- (\tfrac {x_1-x_2-d_2\cos\alpha_2}{d_1})^2 $ into equation 2, though after solving I get something that is as huge as:

    $\displaystyle
    y_1^2 - d_1 (d_1 - x_1^2 + x_2^2 + d_2^2\cos^2\alpha_2 - 2x_2x_1 - 2x_1d_2\cos\alpha_2 + 2x_2d_2\cos\alpha_2) = y_2^2 + d_2^2\sin^2\alpha_2
    $

    and it does not solve anywhere further as there are two unknowns... PEOPLE, PLEASE HELP!!!!!
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Linear system equation problem
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: May 4th 2011, 02:30 PM
  2. non linear system of equation
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: Oct 11th 2009, 01:12 PM
  3. help me solve this system of linear equation.
    Posted in the Algebra Forum
    Replies: 2
    Last Post: Dec 4th 2008, 01:49 PM
  4. Help solving linear equation system
    Posted in the Advanced Algebra Forum
    Replies: 2
    Last Post: Aug 20th 2008, 08:44 PM
  5. help on system linear equation
    Posted in the Pre-Calculus Forum
    Replies: 0
    Last Post: Nov 8th 2007, 08:43 AM

Search Tags


/mathhelpforum @mathhelpforum