physics trajectory problem

Upon spotting an insect on a twig overhanging water, an archer fish squirts water drops at the insect to knock it into the water. Although the fish sees the insect along a straight-line path at angle *φ* and distance d, a drop must be launched at a different angle *θ*0 if its parabolic path is to intersect the insect. If *φ* = 38.0° and *d* = 0.900 m what *θ*0 is required for the drop to be at the top of the parabolic path when it reaches the insect?

Just poking at the problem I have found that the height of the insect is .55m.

If i plug the height into the max height formula, i get velocity at time 0 = 5.33m/s

I am not sure if this is even right, or if I am on the right track.