Results 1 to 4 of 4

Math Help - Inversion and finding a set of TF in MATLAB 7.5.0

  1. #1
    Newbie
    Joined
    Apr 2009
    Posts
    2

    Angry Inversion and finding a set of TF in MATLAB 7.5.0

    I am trying to invert a given matrix and then multiply it by a second matrix to create 3 numeric Transfer Functions using MATLAB 7.5.0 I feel that my code is correct but when i run it i get numeric coefficents of S that are on the order of 11,771,381,206,853,467,500 i would like to get these coefficents reduced to orders of 10^1 or less. Is there some MATLAB function to reduce these co-efficents or do i have to do it by hand? I have attached my code and its output. Any help would be greatly appreciated.
    MATLAB M FILE
    clc
    clear
    format short eng
    format compact
    syms S

    Xu=-.0123+0.0085;
    Uo=876;
    Xt=-32.17*cos(0.04537);
    Zu=-0.1118;
    Zq=0;
    Zt=-32.17*sin(0.04537);
    Mu=-0.0026;
    Mq=-0.4852;
    Xd=12.3976;
    Zd=-49.5906;
    Md=-11.4124;
    Zw=-468.6307/Uo;
    Mw=-7.8706/Uo;
    Xw=-4.9591/Uo;
    A=S-Xu;
    B=-Xw*Uo;
    C=-Xt;
    D=(-1/Uo)*Zu;
    E=S-Zw;
    F=S-(-1/Uo)*Zt;
    G=-Mu;
    H=-Uo*Mw;
    I=S^2-Mq*S;
    J=Xd;
    K=(-1/Uo)*Zd;
    L=Md;

    N=[A B C; D E F; G H I]
    M=inv(N);
    O=M*[J;K;L]

    MATLAB OUTPUT
    N =
    [ S+19/5000, 49591/10000, 4522865987400279*2^(-47)]
    [ 4708552482741387*2^(-65), S+1204637583273045/2251799813685248, S-240036055818929/144115188075855872]
    [ 13/5000, 39353/5000, S^2+1213/2500*S]
    O =
    279169133701442306048*(720575940379279360000*S^3+7 35107472919400745472*S^2-5484328146619850071936*S+9446138904642312937)/(16225927682921336339157801028812800000000*S^4+166 14807230780501961378636831601459200000*S^3-123443458541311479572950570629458267471872*S^2-1408120642774137245176526948273804541952*S-201040921881819649518191926112971291323)-2088550471830367232*(2181035245321584640000*S^2+10 58238301030032867328*S-111242715751351987179375)/(16225927682921336339157801028812800000000*S^4+166 14807230780501961378636831601459200000*S^3-123443458541311479572950570629458267471872*S^2-1408120642774137245176526948273804541952*S-201040921881819649518191926112971291323)+934903808 *(5383117040533337733900823854841856*S+34068949925 11982380371323097183283)/(16225927682921336339157801028812800000000*S^4+166 14807230780501961378636831601459200000*S^3-123443458541311479572950570629458267471872*S^2-1408120642774137245176526948273804541952*S-201040921881819649518191926112971291323)
    -2181008857042518016*(11771381206853467500*S^2-234096198796658868577*S+399419996882697856)/(16225927682921336339157801028812800000000*S^4+166 14807230780501961378636831601459200000*S^3-123443458541311479572950570629458267471872*S^2-1408120642774137245176526948273804541952*S-201040921881819649518191926112971291323)+208855047 1830367232*(439804651110400000000*S^3+215064474392 985600000*S^2+810894223531311104*S-36748286147627266875)/(16225927682921336339157801028812800000000*S^4+166 14807230780501961378636831601459200000*S^3-123443458541311479572950570629458267471872*S^2-1408120642774137245176526948273804541952*S-201040921881819649518191926112971291323)+57062*(32 45185536584267267831560205762560000*S^2+6926573581 312154505379064187977728*S-13330634420839389668941552689815021)/(16225927682921336339157801028812800000000*S^4+166 14807230780501961378636831601459200000*S^3-123443458541311479572950570629458267471872*S^2-1408120642774137245176526948273804541952*S-201040921881819649518191926112971291323)
    -1090504428521259008*(71282502283170598029+47961534 5916448342016*S)/(16225927682921336339157801028812800000000*S^4+166 14807230780501961378636831601459200000*S^3-123443458541311479572950570629458267471872*S^2-1408120642774137245176526948273804541952*S-201040921881819649518191926112971291323)-18371084231796319275233371488256*(393530000*S+8507 31)/(16225927682921336339157801028812800000000*S^4+166 14807230780501961378636831601459200000*S^3-123443458541311479572950570629458267471872*S^2-1408120642774137245176526948273804541952*S-201040921881819649518191926112971291323)-501922660033232896*(368934881474191032320000*S^2+1 98769774193057618722816*S+516495896073503509923)/(16225927682921336339157801028812800000000*S^4+166 14807230780501961378636831601459200000*S^3-123443458541311479572950570629458267471872*S^2-1408120642774137245176526948273804541952*S-201040921881819649518191926112971291323)
    Last edited by buckeye; April 30th 2009 at 10:14 AM.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Grand Panjandrum
    Joined
    Nov 2005
    From
    someplace
    Posts
    14,972
    Thanks
    4
    Quote Originally Posted by buckeye View Post
    I am trying to invert a given matrix and then multiply it by a second matrix to create 3 numeric Transfer Functions using MATLAB 7.5.0 I feel that my code is correct but when i run it i get numeric coefficents of S that are on the order of 11,771,381,206,853,467,500 i would like to get these coefficents reduced to orders of 10^1 or less. Is there some MATLAB function to reduce these co-efficents or do i have to do it by hand? I have attached my code and its output. Any help would be greatly appreciated.
    MATLAB M FILE
    clc
    clear
    format short eng
    format compact
    syms S

    Xu=-.0123+0.0085;
    Uo=876;
    Xt=-32.17*cos(0.04537);
    Zu=-0.1118;
    Zq=0;
    Zt=-32.17*sin(0.04537);
    Mu=-0.0026;
    Mq=-0.4852;
    Xd=12.3976;
    Zd=-49.5906;
    Md=-11.4124;
    Zw=-468.6307/Uo;
    Mw=-7.8706/Uo;
    Xw=-4.9591/Uo;
    A=S-Xu;
    B=-Xw*Uo;
    C=-Xt;
    D=(-1/Uo)*Zu;
    E=S-Zw;
    F=S-(-1/Uo)*Zt;
    G=-Mu;
    H=-Uo*Mw;
    I=S^2-Mq*S;
    J=Xd;
    K=(-1/Uo)*Zd;
    L=Md;

    N=[A B C; D E F; G H I]
    M=inv(N);
    O=M*[J;K;L]

    MATLAB OUTPUT
    N =
    [ S+19/5000, 49591/10000, 4522865987400279*2^(-47)]
    [ 4708552482741387*2^(-65), S+1204637583273045/2251799813685248, S-240036055818929/144115188075855872]
    [ 13/5000, 39353/5000, S^2+1213/2500*S]
    O =
    279169133701442306048*(720575940379279360000*S^3+7 35107472919400745472*S^2-5484328146619850071936*S+9446138904642312937)/(16225927682921336339157801028812800000000*S^4+166 14807230780501961378636831601459200000*S^3-123443458541311479572950570629458267471872*S^2-1408120642774137245176526948273804541952*S-201040921881819649518191926112971291323)-2088550471830367232*(2181035245321584640000*S^2+10 58238301030032867328*S-111242715751351987179375)/(16225927682921336339157801028812800000000*S^4+166 14807230780501961378636831601459200000*S^3-123443458541311479572950570629458267471872*S^2-1408120642774137245176526948273804541952*S-201040921881819649518191926112971291323)+934903808 *(5383117040533337733900823854841856*S+34068949925 11982380371323097183283)/(16225927682921336339157801028812800000000*S^4+166 14807230780501961378636831601459200000*S^3-123443458541311479572950570629458267471872*S^2-1408120642774137245176526948273804541952*S-201040921881819649518191926112971291323)
    -2181008857042518016*(11771381206853467500*S^2-234096198796658868577*S+399419996882697856)/(16225927682921336339157801028812800000000*S^4+166 14807230780501961378636831601459200000*S^3-123443458541311479572950570629458267471872*S^2-1408120642774137245176526948273804541952*S-201040921881819649518191926112971291323)+208855047 1830367232*(439804651110400000000*S^3+215064474392 985600000*S^2+810894223531311104*S-36748286147627266875)/(16225927682921336339157801028812800000000*S^4+166 14807230780501961378636831601459200000*S^3-123443458541311479572950570629458267471872*S^2-1408120642774137245176526948273804541952*S-201040921881819649518191926112971291323)+57062*(32 45185536584267267831560205762560000*S^2+6926573581 312154505379064187977728*S-13330634420839389668941552689815021)/(16225927682921336339157801028812800000000*S^4+166 14807230780501961378636831601459200000*S^3-123443458541311479572950570629458267471872*S^2-1408120642774137245176526948273804541952*S-201040921881819649518191926112971291323)
    -1090504428521259008*(71282502283170598029+47961534 5916448342016*S)/(16225927682921336339157801028812800000000*S^4+166 14807230780501961378636831601459200000*S^3-123443458541311479572950570629458267471872*S^2-1408120642774137245176526948273804541952*S-201040921881819649518191926112971291323)-18371084231796319275233371488256*(393530000*S+8507 31)/(16225927682921336339157801028812800000000*S^4+166 14807230780501961378636831601459200000*S^3-123443458541311479572950570629458267471872*S^2-1408120642774137245176526948273804541952*S-201040921881819649518191926112971291323)-501922660033232896*(368934881474191032320000*S^2+1 98769774193057618722816*S+516495896073503509923)/(16225927682921336339157801028812800000000*S^4+166 14807230780501961378636831601459200000*S^3-123443458541311479572950570629458267471872*S^2-1408120642774137245176526948273804541952*S-201040921881819649518191926112971291323)
    Why have you declared S to be symbolic?

    CB
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Apr 2009
    Posts
    2
    These are Laplace Inverses of a previously defined matrix, hence the S symbolic. It is the Lapalace Variable. I was given the orignial matrix in Laplace Transformed format.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Grand Panjandrum
    Joined
    Nov 2005
    From
    someplace
    Posts
    14,972
    Thanks
    4
    Quote Originally Posted by buckeye View Post
    These are Laplace Inverses of a previously defined matrix, hence the S symbolic. It is the Lapalace Variable. I was given the orignial matrix in Laplace Transformed format.
    But that is what forces all the numerical calculations to be arbitrary precision and so is why the output is unreadable. There is some way of converting the numerical values back to floating point precision (but I don't know what it is as I don't have the symbolic toolboxes).

    CB
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Finding roots of a polynomial of 5th order in Matlab.
    Posted in the Math Software Forum
    Replies: 9
    Last Post: February 7th 2011, 12:54 AM
  2. Matlab help plots, finding nth number....
    Posted in the Math Software Forum
    Replies: 12
    Last Post: March 10th 2010, 08:25 PM
  3. MATLAB finding graph
    Posted in the Math Software Forum
    Replies: 5
    Last Post: December 5th 2009, 08:42 AM
  4. finding asymptotic standard error in matlab or some other tech.
    Posted in the Advanced Statistics Forum
    Replies: 0
    Last Post: February 14th 2009, 03:50 PM
  5. Inversion
    Posted in the Geometry Forum
    Replies: 0
    Last Post: November 28th 2008, 10:30 AM

Search Tags


/mathhelpforum @mathhelpforum