# Thread: MATLAB - matrice help needed

1. ## MATLAB - matrice help needed

Matrix M = A= $\begin{bmatrix}
1 && 3 \\
-2 && 4 \\
\end{bmatrix}$
represents a linear transformation T: $R^{2}$ -> $R^{2}$.
Let u = $\begin{bmatrix}
1 \\
-1 \\
\end{bmatrix}$
and v = $\begin{bmatrix}
-2 \\
1 \\
\end{bmatrix}$

(a) Find T(u) and T(v)
(b) Show that T (u + v) = T (u) + T (v).

I'm pretty hopeless at Matlab. I can work these out by hand: eg T(u) = $\begin{bmatrix}
-2 \\
-6 \\
\end{bmatrix}$
(correct?) but what commands do I use in Matlab to get this?

2. Originally Posted by Dr Zoidburg
Matrix M = A= $\begin{bmatrix}
1 && 3 \\
-2 && 4 \\
\end{bmatrix}$
represents a linear transformation T: $R^{2}$ -> $R^{2}$.
Let u = $\begin{bmatrix}
1 \\
-1 \\
\end{bmatrix}$
and v = $\begin{bmatrix}
-2 \\
1 \\
\end{bmatrix}$

(a) Find T(u) and T(v)
(b) Show that T (u + v) = T (u) + T (v).

I'm pretty hopeless at Matlab. I can work these out by hand: eg T(u) = $\begin{bmatrix}
-2 \\
-6 \\
\end{bmatrix}$
(correct?) but what commands do I use in Matlab to get this?
A*u and A*v

The default product type for Matlab is matrix product so just multiply them.

RonL