Matrix M = A=$\displaystyle \begin{bmatrix}

1 && 3 \\

-2 && 4 \\

\end{bmatrix}$ represents a linear transformation T: $\displaystyle R^{2}$ -> $\displaystyle R^{2}$.

Let u = $\displaystyle \begin{bmatrix}

1 \\

-1 \\

\end{bmatrix}$ and v = $\displaystyle \begin{bmatrix}

-2 \\

1 \\

\end{bmatrix}$

(a) Find T(u) and T(v)

(b) Show that T (u + v) = T (u) + T (v).

I'm pretty hopeless at Matlab. I can work these out by hand: eg T(u) = $\displaystyle \begin{bmatrix}

-2 \\

-6 \\

\end{bmatrix}$ (correct?

) but what commands do I use in Matlab to get this?