Results 1 to 4 of 4

Thread: One more for the road (number series)

  1. #1
    Banned
    Joined
    Oct 2009
    Posts
    769

    One more for the road (number series)

    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    12,028
    Thanks
    849
    Hello, wonderboy1953!

    Well, I got two of them, anyway . . .


    [1] What are the next two numbers in this series?
    . . .(Each number determines the next number.)

    . . $\displaystyle 1, 4, 8, 13, 21, 30, 36, 45, 54, 63, 73, \_\_\,,\:\_\_ $
    Spoiler:

    Each number is the preceding number plus the number of letters
    . . in the preceding number.

    $\displaystyle \begin{array}{ccccc}
    1 + \text{"one"} &=& 1+3 &=& 4 \\
    4 + \text{"four"} &=& 4 + 4 &=& 8 \\
    8 + \text{"eight"} &=& 8 + 5 &=& 13 \\
    13 + \text{"thirteen"} &=& 13 + 8 &=&21 \\
    \vdots && \vdots && \vdots \\
    63 + \text{"sixty-three"} &=& 63 + 10 &=& 73 \\
    73 + \text{"seventy-three"} &=& 73 + 12 &=& \boxed{85} \\
    85 + \text{"eighty-five"} &=& 85 + 10 &=& \boxed{95}
    \end{array}$




    [7] What are the next two numbers in this series?
    . . .The series in not mathematical. Some patriotism is required.)

    . . $\displaystyle 1, 6, 10, 2,3,4,2,3,6,6,2,\:\_\_\,,\;\_\_$
    Spoiler:

    These are the number of letters in the words to the Pledge of Allegience.

    . . $\displaystyle \begin{array}{cc}
    \text{I} & 1 \\
    \text{pledge} & 6 \\
    \text{allegience} & 10 \\
    \text{to} & 2 \\
    \text{the} & 3 \\
    \text{flag} & 4 \\
    \text{of} & 2 \\
    \text{the} & 3 \\
    \text{United} & 6 \\
    \text{States} & 6 \\
    \text{of} & 2 \\
    \text{America} & \boxed{7} \\
    \text{and} & \boxed{3} \end{array}$


    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    12,028
    Thanks
    849
    Got another one!


    $\displaystyle (2)\;\;30, 33, 42, 50, 55, 80, 88, 152, 162, 174,\:\_\_\,,\;\_\_$
    Spoiler:

    Each number is the preceding number
    . . plus the product of the nonzero digits of the preceding number.

    $\displaystyle \begin{array}{ccc} 30 \\ 30 + 3 &=& 33 \\ 33 + 3\!\cdot\!3 &=& 42 \\ 42 + 4\!\cdot\!2 &=& 50 \\ 50 + 5 &=& 55 \\ 55 + 5\!\cdot\!5 &=& 80 \\ 80 + 8 &=& 88 \\
    88 + 8\cdot8 &=& 152 \\ 152 + 1\!\cdot\!5\!\cdot\!2 &=& 162 \\ 162 + 1\!\cdot\!6\!\cdot\!2 &=& 174 \\ 174 + 1\!\cdot\!7\!\cdot\!4 &=& \boxed{202} \\ 202 + 2\!\cdot\!2 &=& \boxed{206} \end{array}$
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor undefined's Avatar
    Joined
    Mar 2010
    From
    Chicago
    Posts
    2,340
    Awards
    1
    Number Series 6

    What are the next six numbers in this series? (Each number is determined from the number before by a simple mathematical relationship. You will need some math.)

    2, 3, 4, 6, 8, 10, 13, 16, 20, 24, ?, ?, ?, ...
    Spoiler:

    Each number is the previous number plus the floor of the square root of that previous number.

    $\displaystyle \displaystyle 2$

    $\displaystyle \displaystyle 2 + \left\lfloor\sqrt{2}\right\rfloor = 3$

    $\displaystyle \displaystyle 3 + \left\lfloor\sqrt{3}\right\rfloor = 4$

    $\displaystyle \displaystyle 4 + \left\lfloor\sqrt{4}\right\rfloor = 6$

    $\displaystyle \displaystyle 6 + \left\lfloor\sqrt{6}\right\rfloor = 8$

    $\displaystyle \displaystyle 8 + \left\lfloor\sqrt{8}\right\rfloor = 10$

    $\displaystyle \displaystyle 10 + \left\lfloor\sqrt{10}\right\rfloor = 13$

    $\displaystyle \displaystyle 13 + \left\lfloor\sqrt{13}\right\rfloor = 16$

    $\displaystyle \displaystyle 16 + \left\lfloor\sqrt{16}\right\rfloor = 20$

    $\displaystyle \displaystyle 20 + \left\lfloor\sqrt{20}\right\rfloor = 24$

    $\displaystyle \displaystyle 24 + \left\lfloor\sqrt{24}\right\rfloor = \boxed{28}$

    $\displaystyle \displaystyle 28 + \left\lfloor\sqrt{28}\right\rfloor = \boxed{33}$

    $\displaystyle \displaystyle 33 + \left\lfloor\sqrt{33}\right\rfloor = \boxed{38}$

    $\displaystyle \cdots$
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Slipping on Curved Road
    Posted in the Math Topics Forum
    Replies: 1
    Last Post: Jan 7th 2012, 12:53 PM
  2. Road Allignment
    Posted in the Math Topics Forum
    Replies: 3
    Last Post: Jan 4th 2012, 10:26 AM
  3. Replies: 2
    Last Post: Aug 19th 2010, 09:32 PM
  4. Pedestrian crossing the road
    Posted in the Advanced Statistics Forum
    Replies: 2
    Last Post: May 20th 2009, 08:18 PM
  5. A road between two cities
    Posted in the Calculus Forum
    Replies: 1
    Last Post: Mar 14th 2008, 04:19 PM

Search Tags


/mathhelpforum @mathhelpforum