Page 4 of 7 FirstFirst 1234567 LastLast
Results 46 to 60 of 104

Math Help - MHF Integral Bee!

  1. #46
    Super Member
    Joined
    Jan 2009
    Posts
    715
    Quote Originally Posted by simplependulum View Post
    Problem :

     L^{-1} [ \sqrt{s + \sqrt{s^2 + a^2}} ]

    Is it related to INTEGRAL ? If you think it is not , i still have another problem
    The interesting thing of the problem is

     \sqrt{s + \sqrt{s^2 + a^2}} = \frac{1}{2} \sqrt{ 2s + 2\sqrt{(s-ai)(s+ai)}}

     = \frac{1}{2} \sqrt{ s + ai + 2\sqrt{s+ai}\sqrt{s-ai} + s - ai}

     = \frac{1}{2} ( \sqrt{ s+ai} + \sqrt{s-ai})
    Follow Math Help Forum on Facebook and Google+

  2. #47
    Banned
    Joined
    Aug 2009
    Posts
    143
    Quote Originally Posted by Amer View Post
    What is the new integral ?? luobo you should post an integral .
    The problem is copied from the internet.

    The harmonic series
    <br />
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+ ...<br />
    converges. Show that the rearranged series
    <br />
1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+...<br />
    also converges and find its limit
    Follow Math Help Forum on Facebook and Google+

  3. #48
    MHF Contributor

    Joined
    May 2008
    Posts
    2,295
    Thanks
    7
    Quote Originally Posted by luobo View Post
    The problem is copied from the internet.

    The harmonic series
    <br />
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+ ...<br />
    converges. Show that the rearranged series
    <br />
1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+...<br />
    also converges and find its limit
    well, i don't know, this might be related to "integration" somehow but this thread is supposed to be about "techniques of integration"! so let's just keep it that way please.

    i don't want this thread to go in a different direction. cheers!

    .................................................. .......................................

    I'm going to bend the rules a little bit and give you a few integrals instead of one. Pick whichever you like and share your solution with us if you feel like it:

    1) \int_0^1 (1-x)e^{-x} \ln x \ dx

    2) \int_0^1 \frac{x(x+1)\sin (\ln x)}{\ln x} \ dx

    3) \int_0^{\infty}\cot^{-1}(ax) \cot^{-1}(bx) \ dx, \ \ a > 0, \ b > 0

    4) \int_0^{\pi} (\sin x)^a \sin(ax) \ dx, \ \ a > -1

    5) \int_0^{\infty} \sin (x^a) \ dx, \ \ a > 1. (the answer to this one is in terms of Gamma function!)

    Have fune!
    Follow Math Help Forum on Facebook and Google+

  4. #49
    Math Engineering Student
    Krizalid's Avatar
    Joined
    Mar 2007
    From
    Santiago, Chile
    Posts
    3,654
    Thanks
    14
    Quote Originally Posted by NonCommAlg View Post

    1) \int_0^1 (1-x)e^{-x} \ln x \ dx
    Rewrite the integral as -\int_0^1\int_x^1\frac{(1-x)e^{-x}}t\,dt\,dx, after reverse integration order and by straightforward computations we'll get that the integral is -\int_0^1e^{-t}\,dt=\frac1e-1.
    Follow Math Help Forum on Facebook and Google+

  5. #50
    Math Engineering Student
    Krizalid's Avatar
    Joined
    Mar 2007
    From
    Santiago, Chile
    Posts
    3,654
    Thanks
    14
    Quote Originally Posted by NonCommAlg View Post

    2) \int_0^1 \frac{x(x+1)\sin (\ln x)}{\ln x} \ dx
    Start with this simple fact: \frac{\sin(\ln x)}{\ln x}=\int_0^1\cos(t\ln x)\,dt. Thus the integral becomes (after reversing integration order) \int_0^1\int_0^1x(x+1)\cos(t\ln x)\,dx\,dt, so it remains to compute \int_0^1\left(\frac3{t^2+9}+\frac2{t^2+4}\right)\,  dt and its value is \arctan\left(\frac13\right)+\arctan\left(\frac12\r  ight) which is the answer of the integral.

    ----------

    See below for full answer. I did this when I was in college, so no time to do anything else!
    Last edited by Krizalid; August 21st 2009 at 04:59 PM.
    Follow Math Help Forum on Facebook and Google+

  6. #51
    MHF Contributor

    Joined
    May 2008
    Posts
    2,295
    Thanks
    7
    Quote Originally Posted by Krizalid View Post
    Start with this simple fact: \frac{\sin(\ln x)}{\ln x}=\int_0^1\cos(t\ln x)\,dt. Thus the integral becomes (after reversing integration order) \int_0^1\int_0^1x(x+1)\cos(t\ln x)\,dx\,dt, so it remains to compute \int_0^1\left(\frac3{t^2+9}+\frac2{t^2+4}\right)\,  dt and its value is \arctan\left(\frac13\right)+\arctan\left(\frac12\r  ight) which is the answer of the integral.
    and: \tan^{-1}\left(\frac13\right)+\tan^{-1}\left(\frac12\right)=\tan^{-1} \left(\frac{\frac{1}{2}+\frac{1}{3}}{1 - \frac{1}{6}} \right) = \frac{\pi}{4}.


    ok, two down, three to go:


    3) \int_0^{\infty}\cot^{-1}(ax) \cot^{-1}(bx) \ dx, \ \ a > 0, \ b > 0

    4) \int_0^{\pi} (\sin x)^a \sin(ax) \ dx, \ \ a > -1

    5) \int_0^{\infty} \sin (x^a) \ dx, \ \ a > 1.
    Follow Math Help Forum on Facebook and Google+

  7. #52
    MHF Contributor Bruno J.'s Avatar
    Joined
    Jun 2009
    From
    Canada
    Posts
    1,266
    Thanks
    1
    Awards
    1
    I attack <br />
I=\int_0^{\infty} \sin (x^a) \ dx, \ \ a > 1.<br />

    First we substitute x^a=t. Then ax^{a-1}dx=dt, i.e. dx = \frac{dt}{ax^{a-1}}=\frac{1}{a}{t^\frac{1-a}{a}}\: dt.

    Now \int_0^{\infty} \sin (x^a) \ dx = \frac{1}{a}\int_0^{\infty} \sin (t){t^\frac{1-a}{a}}\: dt = \frac{1}{2ia}\int_0^{\infty} (e^{it}-e^{-it}){t^\frac{1-a}{a}}\: dt.

    Now consider I_1=\frac{1}{2ia}\int_0^{\infty} e^{it}t^\frac{1-a}{a}\: dt. Set it=-u, so dt = i\: du. Then the integral becomes

    \frac{1}{2ia}\int_0^{\infty} e^{-u}(iu)^\frac{1-a}{a}\: i\: du = \frac{i^{\frac{1-a}{a}}}{2a}\int_0^{\infty} e^{-u}u^{\frac{1}{a}-1}\: du = \frac{i^{\frac{1-a}{a}}}{2a}\Gamma\left(\frac{1}{a}\right).

    Similarily, consider I_2=\frac{-1}{2ia}\int_0^{\infty} e^{-it}t^\frac{1-a}{a}\: dt. Set it=u, so dt = -i\: du. Then the integral becomes

    \frac{-1}{2ia}\int_0^{\infty} e^{-u}(-iu)^\frac{1-a}{a}\: (-i\: du) = \frac{(-i)^{\frac{1-a}{a}}}{2a}\int_0^{\infty} e^{-u}u^{\frac{1}{a}-1}\: du = \frac{(-i)^{\frac{1-a}{a}}}{2a}\Gamma\left(\frac{1}{a}\right) = \overline{I_1}.

    So finally I=I_1+I_2=I_1+\overline{I_1} = 2\Re(I_1)=\frac{\Gamma\left(\frac{1}{a}\right)\Re(  i^{\frac{1-a}{a}})}{a}=\frac{\Gamma\left(\frac{1}{a}\right)\c  os(\frac{\pi}{2}\frac{1-a}{a})}{a}=\frac{\Gamma\left(\frac{1}{a}\right)\si  n(\frac{\pi}{2a})}{a}
    Last edited by Bruno J.; August 23rd 2009 at 06:40 PM.
    Follow Math Help Forum on Facebook and Google+

  8. #53
    MHF Contributor Bruno J.'s Avatar
    Joined
    Jun 2009
    From
    Canada
    Posts
    1,266
    Thanks
    1
    Awards
    1
    Here is my integral! I posted a particular case of this one not very long ago but here it is anyways because I think it's very nice.

    Determine for which values of z (possibly complex) the following integral exists, and evaluate it for those z:

    I(z)=\int_0^1\frac{\log(x)^z\log(1-x)}{x}\ dx
    Follow Math Help Forum on Facebook and Google+

  9. #54
    Banned
    Joined
    Aug 2009
    Posts
    143
    Quote Originally Posted by Bruno J. View Post
    Here is my integral! I posted a particular case of this one not very long ago but here it is anyways because I think it's very nice.

    Determine for which values of z (possibly complex) the following integral exists, and evaluate it for those z:
    I(z)=\int_0^1\frac{\log(x)^z\log(1-x)}{x}\ dx
    <br />
I(z)=\int_0^1\frac{\log(x)^z\log(1-x)}{x}\ dx=<br />

    <br />
\int_0^\infty (-u)^z\ln(1-e^{-u})\;du=<br />
(Note: Let  x=e^{-u} )

    <br />
(-1)^{z+1}\int_0^\infty u^z\sum_{n=1}^{\infty} \frac{e^{-nu}}{n} \; du=<br />

    <br />
(-1)^{z+1}\sum_{n=1}^{\infty} \frac{1}{n} \int_0^\infty u^z e^{-nu} \; du=<br />

    <br />
(-1)^{z+1}\sum_{n=1}^{\infty} \frac{1}{n^{z+2}} \int_0^\infty t^z e^{-t} \; dt=<br />
(Note: Let  t=nu )

    <br />
(-1)^{z+1}\Gamma(z+1)\sum_{n=1}^{\infty} \frac{1}{n^{z+2}}

    <br />
(-1)^{z+1}\Gamma(z+1)\;\zeta(z+2)<br />

    which requires Re (z+2)>1, i.e. Re (z)>-1 to exist.
    Follow Math Help Forum on Facebook and Google+

  10. #55
    Banned
    Joined
    Aug 2009
    Posts
    143
    Quote Originally Posted by Bruno J. View Post
    I attack <br />
I=\int_0^{\infty} \sin (x^a) \ dx, \ \ a > 1.<br />

    First we substitute x^a=t. Then ax^{a-1}dx=dt, i.e. dx = \frac{dt}{ax^{a-1}}=\frac{1}{a}{t^\frac{1-a}{a}}\: dt.

    Now \int_0^{\infty} \sin (x^a) \ dx = \frac{1}{a}\int_0^{\infty} \sin (t){t^\frac{1-a}{a}}\: dt = \frac{1}{2ia}\int_0^{\infty} (e^{it}-e^{-it}){t^\frac{1-a}{a}}\: dt.

    Now consider I_1=\frac{1}{2ia}\int_0^{\infty} e^{it}t^\frac{1-a}{a}\: dt. Set it=-u, so dt = i\: du. Then the integral becomes

    \frac{1}{2ia}\int_0^{\infty} e^{-u}(iu)^\frac{1-a}{a}\: i\: du = \frac{i^{\frac{1-a}{a}}}{2a}\int_0^{\infty} e^{-u}u^{\frac{1}{a}-1}\: du = \frac{i^{\frac{1-a}{a}}}{2a}\Gamma\left(\frac{1}{a}\right).

    Similarily, consider I_2=\frac{-1}{2ia}\int_0^{\infty} e^{-it}t^\frac{1-a}{a}\: dt. Set it=u, so dt = -i\: du. Then the integral becomes

    \frac{-1}{2ia}\int_0^{\infty} e^{-u}(-iu)^\frac{1-a}{a}\: (-i\: du) = \frac{(-i)^{\frac{1-a}{a}}}{2a}\int_0^{\infty} e^{-u}u^{\frac{1}{a}-1}\: du = \frac{(-i)^{\frac{1-a}{a}}}{2a}\Gamma\left(\frac{1}{a}\right) = \overline{I_1}.

    So finally I=I_1+I_2=I_1+\overline{I_1} = 2\Re(I_1)=\frac{\Gamma\left(\frac{1}{a}\right)\Re(  i^{\frac{1-a}{a}})}{a}=\frac{\Gamma\left(\frac{1}{a}\right)\c  os(\frac{\pi}{2}\frac{1-a}{a})}{a}
    which is also
    <br />
\frac{\Gamma\left(\frac{1}{a}\right)\sin\frac{\pi}  {2a}}{a}
    Follow Math Help Forum on Facebook and Google+

  11. #56
    Super Member
    Joined
    Jan 2009
    Posts
    715
    Quote Originally Posted by NonCommAlg View Post
    3) \int_0^{\infty}\cot^{-1}(ax) \cot^{-1}(bx) \ dx, \ \ a > 0, \ b > 0

    4) \int_0^{\pi} (\sin x)^a \sin(ax) \ dx, \ \ a > -1
    no.3 the answer is  \frac{\pi}{2}(\frac{1}{a}+\frac{1}{b})\ln(a+b) - \frac{{\pi}}{2}(\frac{\ln{b}}{a} + \frac{\ln{a}}{b})

    no.4  \int_0^{\pi} e^{iax} (\sin(x))^a ~dx = \frac{\pi}{2^a}e^{i\frac{\pi}{2}a}
    Last edited by simplependulum; August 21st 2009 at 08:49 PM.
    Follow Math Help Forum on Facebook and Google+

  12. #57
    Super Member
    Joined
    Jan 2009
    Posts
    715
    Quote Originally Posted by luobo View Post
    which is also
    <br />
\frac{\Gamma\left(\frac{1}{a}\right)\sin\frac{\pi}  {2a}}{a}
    When  a = 2 , the integral becomes the Frensel Integral and the result is  \sqrt{\pi}/\sqrt{8}


    yes you are right , it is  \frac{\sqrt{\pi}}{\sqrt{8}}
    Last edited by simplependulum; August 21st 2009 at 08:50 PM.
    Follow Math Help Forum on Facebook and Google+

  13. #58
    Banned
    Joined
    Aug 2009
    Posts
    143
    Quote Originally Posted by simplependulum View Post
    When  a = 2 , the integral becomes the Frensel Integral and the result is  \sqrt{\pi}/\sqrt{2}
    Fresnel integrals:  \frac{\sqrt{\pi}}{2\sqrt{2}}
    Follow Math Help Forum on Facebook and Google+

  14. #59
    MHF Contributor

    Joined
    May 2008
    Posts
    2,295
    Thanks
    7
    Quote Originally Posted by simplependulum View Post
    no.3 the answer is  \frac{\pi}{2}(\frac{1}{a}+\frac{1}{b})\ln(a+b) - \frac{{\pi}}{2}(\frac{\ln{b}}{a} + \frac{\ln{a}}{b})
    correct!


    no.4  \int_0^{\pi} e^{iax} (\sin(x))^a ~dx = \frac{\pi}{2^a}e^{i\frac{\pi}{2}a}
    and that gives us: \int_0^{\pi} (\sin x)^a \sin(ax) \ dx = \frac{\pi}{2^a} \sin \left(\frac{\pi a}{2} \right), which is the correct answer. i hope you'll also post your solutions!

    ---------------------------------------------

    Ok, this problem is nice:

    Problem: Suppose f,g : [a,b] \longrightarrow (0, \infty) are continuous, f is decreasing and g is increasing. Prove that for all real numbers c \geq d > 0: \ \ \frac{\int_a^b f^c(x) \ dx}{\int_a^b f^d(x) \ dx} \geq \frac{\int_a^b g(x)f^c(x) \ dx}{\int_a^b g(x) f^d(x) \ dx}.

    Note: Here by f^r(x) we mean (f(x))^r. The solution I know doesn't use any known integral inequalities. Instead, it uses a nice integration technique and it's fairly short!
    Follow Math Help Forum on Facebook and Google+

  15. #60
    Super Member PaulRS's Avatar
    Joined
    Oct 2007
    Posts
    571
    Quote Originally Posted by NonCommAlg View Post
    Problem: Suppose f,g : [a,b] \longrightarrow (0, \infty) are continuous, f is decreasing and g is increasing. Prove that for all real numbers c \geq d > 0: \ \ \frac{\int_a^b f^c(x) \ dx}{\int_a^b f^d(x) \ dx} \geq \frac{\int_a^b g(x)f^c(x) \ dx}{\int_a^b g(x) f^d(x) \ dx}.
    Since c\geq d we know that \tfrac{f^d(x)}{f^c(x)} must be non-decreasing - because f is non-increasing- (we can divide by f since it is non-zero in our interval), thus we must have <br />
\left( {\tfrac{{f^d \left( x \right)}}<br />
{{f^c \left( x \right)}} - \tfrac{{f^d \left( y \right)}}<br />
{{f^c \left( y \right)}}} \right) \cdot \left( {g\left( x \right) - g\left( y \right)} \right) \geqslant 0<br />

    Expand: <br />
\tfrac{{f^d \left( x \right)}}<br />
{{f^c \left( x \right)}} \cdot g\left( x \right) + \tfrac{{f^d \left( y \right)}}<br />
{{f^c \left( y \right)}} \cdot g\left( y \right) \geqslant \tfrac{{f^d \left( x \right)}}<br />
{{f^c \left( x \right)}} \cdot g\left( y \right) + \tfrac{{f^d \left( y \right)}}<br />
{{f^c \left( y \right)}} \cdot g\left( x \right)<br />
the inequality will be preserved if we multiply by: <br />
f^c \left( x \right) \cdot f^c \left( y\right) > 0<br />

    Thus: <br />
f^d \left( x \right) \cdot g\left( x \right) \cdot f^c \left( y \right) + f^d \left( y \right) \cdot g\left( y \right) \cdot f^c \left( x \right) \geqslant f^c \left( y \right) \cdot g\left( y \right) \cdot f^d \left( x \right) + f^c \left( x \right) \cdot g\left( x \right) \cdot f^d \left( y \right)<br />

    Now integrate in <br />
\left[ {a,b} \right] \times \left[ {a,b} \right]<br />
and the inequality follows since g(x),f(x)>0 in  \left[ {a,b} \right] -and so the integrals are positive, and we can divide-
    Follow Math Help Forum on Facebook and Google+

Page 4 of 7 FirstFirst 1234567 LastLast

Similar Math Help Forum Discussions

  1. Replies: 2
    Last Post: August 31st 2010, 08:38 AM
  2. Replies: 1
    Last Post: June 2nd 2010, 03:25 AM
  3. Replies: 0
    Last Post: May 9th 2010, 02:52 PM
  4. Replies: 0
    Last Post: September 10th 2008, 08:53 PM
  5. Replies: 6
    Last Post: May 18th 2008, 07:37 AM

Search Tags


/mathhelpforum @mathhelpforum