Some alignment may help . . .

Code:

1 2 3 4 5 6 7 8
1 I O S W W A T H
2 C A M O L V D L
3 G I N G X N S Y
4 P A U O S E U E
5 R W I E V D B A
6 K A Y A S S O Z
7 S B C Z Y E A Z
8 Z A K G V R K A
Clue
1 2 3 4 5 6 7 8
1 12 14 13 8 6 15 13 10
2 11 9 8 8 11 7 14 15
3 9 12 13 14 9 13 16 10
4 9 7 10 12 11 12 10 11
5 8 6 7 8 9 5 3 7
6 6 10 8 10 5 11 4 6
7 10 9 11 7 5 9 7 5
8 4 2 12 8 6 4 9 3

. . . . . or not.

I have a theory . . .

Think of the first chart as an "addition table".

We have: $\displaystyle 1 + 1 \,= \,2 \;\Rightarrow\; I$

Then: $\displaystyle 1 + 2 \,= \,2 + 1 \,= \,3 \;\Rightarrow\; O,\;C$

And: $\displaystyle 1 + 3 \,= \,2 + 2\,=\,3 + 1\,=\,4\:\Rightarrow\;S,\;A,\:G$

. . and so on.

In the "Clue" chart, we can replace the "2" with $\displaystyle I.$

We can replace the __two__ occurances of "3" with either $\displaystyle O$ or $\displaystyle C.$

We can replace the __three__ occurances of "4" with $\displaystyle S,\;A,\;G.$

I've counted the numbers in *Clue* and they "fit".

. $\displaystyle 2 \Rightarrow I$

. $\displaystyle 3 \Rightarrow O,\;C$

. $\displaystyle 4 \Rightarrow S,\;A,\;G$

. $\displaystyle 5 \Rightarrow W,\;M,\;I,\;P$

. $\displaystyle 6 \Rightarrow W,\;O,\;N,\,A,\;R$

. $\displaystyle 7 \Rightarrow A,\;L,\;G,\;U,\;W,\;K$

. $\displaystyle 8 \Rightarrow T,\;V,\,X,\,O,\;I,\,A,\;S$

. $\displaystyle 9 \Rightarrow H,\;D,\;N,\;S,\;E,\;Y,\;B,\;Z$

$\displaystyle 10 \Rightarrow L,\;S,\;E,\;V,\;A,\;C,\;A$

$\displaystyle 11 \Rightarrow Y,\,U,\,D,\;S,\;Z,\;K$

$\displaystyle 12 \Rightarrow E,\;B,\;S,\;Y,\;G$

$\displaystyle 13 \Rightarrow A,\;O,\;E,\,V$

$\displaystyle 14 \Rightarrow Z,\;A,\;R$

$\displaystyle 15 \Rightarrow Z,\;K$

$\displaystyle 16 \Rightarrow A$

I would guess that, if we place the correct letters into the Clue chart,

. . we will get eight 8-letter words.

But I've been known to be egregiously wrong . . .