Results 1 to 5 of 5

Math Help - improper integral #2

  1. #1
    Super Member Random Variable's Avatar
    Joined
    May 2009
    Posts
    959
    Thanks
    3

    improper integral #2

    Show that  \displaystyle \int_{0}^{\infty} \Big( \frac{1}{1+x^{2}} - \cos x \Big) \ \frac{dx}{x}  is an integral representation of Euler's constant.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member
    Joined
    Mar 2010
    Posts
    715
    Thanks
    2
    Any hints, RV? The integrand can be written as:

    \displaystyle \sum_{k = 0}^{\infty}\frac{(-1)^k\left((2k)!-1\right)x^{2k-1}}{(2k)!}

    but that's probably just useless for this integral!
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member Random Variable's Avatar
    Joined
    May 2009
    Posts
    959
    Thanks
    3
    Since my proof may not even be valid, I'll just post it instead of giving any hints.


     \displaystyle \int^{\infty}_{0} \Big( \frac{1}{1+x^{2}} - \cos x \Big) \ \frac{dx}{x}

      \displaystyle = \int^{\infty}_{0} \int^{\infty}_{0} \Big( \frac{1}{1+x^{2}} - \cos x \Big) e^{-tx} \ dt \ dx

     \displaystyle = \int^{\infty}_{0} \int^{\infty}_{0} \Big( \frac{1}{1+x^{2}} - \cos x \Big) e^{-tx} \ dx \ dt Probably justifiable.

     \displaystyle = \int^{\infty}_{0}  \Big( \int^{\infty}_{0} \frac{e^{-tx}}{1+x^{2}} \ dx - \mathcal{L} \{\cos x \} (t) \Big) \ dt

     \displaystyle = \int^{\infty}_{0}  \Big( \int^{\infty}_{0} \frac{e^{-tx}}{1+x^{2}} \ dx - \frac{t}{1+t^{2}} \Big) \ dt


    let  u = tx


     \displaystyle = \int^{\infty}_{0}  \Big( \int^{\infty}_{0} \frac{t e^{-u}}{t^{2}+u^{2}} \ du - \frac{t}{1+t^{2}} \Big) \ dt

     \displaystyle = \int^{\infty}_{0}  \Big( \int^{\infty}_{0} \frac{t e^{-u}}{t^{2}+u^{2}} \ du - \int^{\infty}_{0} \frac{te^{-u}}{1+t^{2}} \ du \Big) \ dt

     \displaystyle = \int^{\infty}_{0} \int^{\infty}_{0}  \Big( \frac{t}{t^{2}+u^{2}} - \frac{t}{1+t^{2}} \Big) e^{-u} \ du \ dt

     \displaystyle = \int^{\infty}_{0} \int^{\infty}_{0}  \Big( \frac{t}{t^{2}+u^{2}} - \frac{t}{1+t^{2}} \Big) e^{-u} \ dt \ du Perhaps justifiable.

     \displaystyle = \frac{1}{2} \int^{\infty}_{0} \ln \Big(\frac{u^{2}+t^{2}}{1+t^{2}} \Big ) \Big|^{\infty}_{0} \ e^{-u} \ du

     \displaystyle = - \int^{\infty}_{0} \ln u \ e^{-u} \ du = -(-\gamma) = \gamma
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member Random Variable's Avatar
    Joined
    May 2009
    Posts
    959
    Thanks
    3
    To justify the first change of order, you probably could write the integral as  \displaystyle \lim_{a \to 0} \int^{\infty}_{a} \int^{\infty}_{a} \Big( \frac{1}{1+x^{2}} - \cos x \Big) e^{-tx} \ dt \ dx \ , a>0 . Then change the order of integration, integrate with respect to x, and then justify bringing the limit inside of the integral.

    For the second change, perhaps you can write it as  \displaystyle \lim_{b \to \infty} \int^{b}_{0} \int^{\infty}_{0} \Big( \frac{t}{u^{2}+t^{2}} - \frac{t}{1+ t^{2}} \Big) e^{-u} \ du \ dt where b is value such that the integrand is now always positive. Then do the same thing as above.

    I think in both cases you could use use dominated convergence theorem to justify moving the integral inside of the integral. I would really like someone to tell me if I'm completely off base or not. This has been drving me a bit crazy over the past few days.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Newbie
    Joined
    Feb 2011
    Posts
    17
    Quote Originally Posted by Random Variable View Post
    Since my proof may not even be valid, I'll just post it instead of giving any hints.


     \displaystyle \int^{\infty}_{0} \Big( \frac{1}{1+x^{2}} - \cos x \Big) \ \frac{dx}{x}

      \displaystyle = \int^{\infty}_{0} \int^{\infty}_{0} \Big( \frac{1}{1+x^{2}} - \cos x \Big) e^{-tx} \ dt \ dx

     \displaystyle = \int^{\infty}_{0} \int^{\infty}_{0} \Big( \frac{1}{1+x^{2}} - \cos x \Big) e^{-tx} \ dx \ dt Probably justifiable.

     \displaystyle = \int^{\infty}_{0}  \Big( \int^{\infty}_{0} \frac{e^{-tx}}{1+x^{2}} \ dx - \mathcal{L} \{\cos x \} (t) \Big) \ dt

     \displaystyle = \int^{\infty}_{0}  \Big( \int^{\infty}_{0} \frac{e^{-tx}}{1+x^{2}} \ dx - \frac{t}{1+t^{2}} \Big) \ dt


    let  u = tx


     \displaystyle = \int^{\infty}_{0}  \Big( \int^{\infty}_{0} \frac{t e^{-u}}{t^{2}+u^{2}} \ du - \frac{t}{1+t^{2}} \Big) \ dt

     \displaystyle = \int^{\infty}_{0}  \Big( \int^{\infty}_{0} \frac{t e^{-u}}{t^{2}+u^{2}} \ du - \int^{\infty}_{0} \frac{te^{-u}}{1+t^{2}} \ du \Big) \ dt

     \displaystyle = \int^{\infty}_{0} \int^{\infty}_{0}  \Big( \frac{t}{t^{2}+u^{2}} - \frac{t}{1+t^{2}} \Big) e^{-u} \ du \ dt

     \displaystyle = \int^{\infty}_{0} \int^{\infty}_{0}  \Big( \frac{t}{t^{2}+u^{2}} - \frac{t}{1+t^{2}} \Big) e^{-u} \ dt \ du Perhaps justifiable.

     \displaystyle = \frac{1}{2} \int^{\infty}_{0} \ln \Big(\frac{u^{2}+t^{2}}{1+t^{2}} \Big ) \Big|^{\infty}_{0} \ e^{-u} \ du

     \displaystyle = - \int^{\infty}_{0} \ln u \ e^{-u} \ du = -(-\gamma) = \gamma
    Great
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Improper integral
    Posted in the Calculus Forum
    Replies: 1
    Last Post: April 19th 2010, 01:19 PM
  2. Improper Integral help?
    Posted in the Calculus Forum
    Replies: 1
    Last Post: March 15th 2010, 04:03 PM
  3. Improper Integral
    Posted in the Calculus Forum
    Replies: 2
    Last Post: February 27th 2010, 11:58 AM
  4. Improper integral 2
    Posted in the Calculus Forum
    Replies: 4
    Last Post: July 26th 2008, 10:54 AM
  5. Improper integral
    Posted in the Calculus Forum
    Replies: 2
    Last Post: July 25th 2008, 11:14 PM

Search Tags


/mathhelpforum @mathhelpforum