# Ever notice this?

• Jun 1st 2007, 08:10 PM
Soroban
Ever notice this?
Select a four-digit number (other than a multiple of 1111).

(1) Arrange the digits in decreasing order.
(2) Arrange the digits in increasing order.
(3) Subtract these two numbers.
(4) Repeat steps (1), (2), (3) with this new number.

Repeat step (4) until you are sleepy.

Exanple: . $1728$

$8721 - 1278 \:=\:7443$

$7443 - 3447 \:=\:3996$

$9963 - 3699 \:=\:6264$

$6642 - 2466 \:=\:4176$

$7641 - 1467 \:=\:6174$

$7641 - 1467 \:=\:6174$

. . . $\vdots$ . . . . . . . $\vdots$

• Jun 2nd 2007, 01:13 AM
Glaysher
Quote:

Originally Posted by Soroban
Select a four-digit number (other than a multiple of 1111).

(1) Arrange the digits in decreasing order.
(2) Arrange the digits in increasing order.
(3) Subtract these two numbers.
(4) Repeat steps (1), (2), (3) with this new number.

Repeat step (4) until you are sleepy.

Exanple: . $1728$

$8721 - 1278 \:=\:7443$

$7443 - 3447 \:=\:3996$

$9963 - 3699 \:=\:6264$

$6642 - 2466 \:=\:4176$

$7641 - 1467 \:=\:6174$

$7641 - 1467 \:=\:6174$

. . . $\vdots$ . . . . . . . $\vdots$

Yes, you get Kaprekar numbers
• Aug 1st 2007, 05:14 PM
ray_sitf
What happens with 5 digits, 6 digits, etcetera? Are there any 4 digit nbrs that don't wind up at 6174, apart from 1111 etc?
• Aug 2nd 2007, 12:32 AM
Glaysher
Quote:

Originally Posted by ray_sitf
What happens with 5 digits, 6 digits, etcetera? Are there any 4 digit nbrs that don't wind up at 6174, apart from 1111 etc?

Kaprekar Number