1. ## [SOLVED] Golden Number linked to 666

Formal Proof needed

Hello,

While working on my websites on 666 myth ( http://www.666myth.co.nr/ French= http://www.666mythe.co.nr/ ) and on Isomorphous Triplets ( http://www.chez.com/cosmos2000/Numbe...sTriplets.html ) I have found recently direct links between the Beast Number 666 and the famous Golden Number Phi, well-known by Pythagoras, Leonardo da Vinci ... and in Sacred Geometry. This unexpected and incredible relation 666 versus Φ may constitute a way for the Rehabilitation of 666 !!! ...

First we have this curious relations:

666 = 7^3 pi (Phi – 1) = 7^3 pi phi or 666 = (6/5) 7^3 Phi
with pi = 3.141593 Phi = 1.618034 phi = Phi -1 = 0.618034 7^3 = cubic of 7

Besides, after computing some sinus and cosines [a good online Trigonometry calculator available at http://www.1728.com/trigcalc.htm ], expressed in Degrees and absolute values, we obtain:

Phi /2 = sin 666º = cos 324º = cos 216º = cos 144º = cos 36º = 0.80901699...
Phi = 2sin 666º = 2cos 324º = 2cos 216º = 2cos 144º = 2cos 36º = 1,61803399...
Phi = sin 666º + cos 216º = sin 666º + cos (6x6x6)º
Phi = cos 144º + cos 36º = cos [(6+6) x (6+6)]º + cos (6 x 6)º
Phi = sin 666º + cos 144º = sin 666º + cos [(6+6) x (6+6)]º

But, I am wondering if there could exist formal mathematical proofs for this 666 and Golden Number links.

2. Amazing. Ever since I was little I've been waiting for someone to come up with a mathematical explanation for 666. So what does this relationship tell us about the end of the world??

3. Originally Posted by cosmos2000
666 = 7^3 pi (Phi – 1) = 7^3 pi phi
That's not correct, the correct value is 665.973...

Phi /2 = sin 666º = cos 324º = cos 216º = cos 144º = cos 36º = 0.80901699...
... and so on: All this is a consequence of the facts that 2cos(pi/5) = Phi, which is well known from the geometry of a pentagon. The number 666 is related because 666 = 36 mod 90, 36 degrees corresponds to pi/5 radians, and the trigonometric functions have symmetry properties wrt. 90 degrees = pi/2. The following formulae are simple consequences of addition theorems.

Nothing really exciting here.