Results 1 to 2 of 2

Thread: Inequlity

  1. #1
    Junior Member
    Joined
    Dec 2009
    Posts
    34

    Inequlity

    Let $\displaystyle a>0$ and $\displaystyle k>1$. Prove that for comlex $\displaystyle z$

    $\displaystyle |arg\ (z)|\leq 2\,\arccos\frac 1k \Rightarrow |a+z|\geq \frac {a+|z|}k $

    Hint: $\displaystyle \cos x$ is decreasind in $\displaystyle [o,\pi]$. Not so difficult, I think?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Member
    Joined
    Mar 2009
    Posts
    91

    Inequality

    How about this?

    Let $\displaystyle \theta=\arg z$. Since $\displaystyle |\arg z|\leq 2\arccos\dfrac1k=2\alpha$ and $\displaystyle \cos x$ is decreasing on $\displaystyle [0,\pi]$ we have

    $\displaystyle \cos\theta\geq\cos 2\alpha=2\cos^2\alpha-1=\dfrac2{k^2}-1$.

    Thus

    $\displaystyle \mathop{\textrm{Re}} z=|z|\cos\theta\geq\left(\dfrac2{k^2}-1\right)|z|$.

    Now
    $\displaystyle
    |a+z|^2=a^2+2a\mathop{\textrm{Re}}z+|z|^2\geq a^2+2a|z|\left(\dfrac2{k^2}-1\right)+|z|^2$

    Hence
    $\displaystyle
    |a+z|^2-\dfrac{(a+|z|)^2}{k^2}\geq\left(1-\dfrac1{k^2}\right)(a^2-2a|z|+|z|^2)$

    Since $\displaystyle a^2-2a|z|+|z|^2=(a-|z|)^2\geq 0$ and $\displaystyle k>1$ the result follows.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Guidance r.e. Chebyshev's Inequlity.
    Posted in the Advanced Statistics Forum
    Replies: 42
    Last Post: Jan 6th 2012, 10:57 AM
  2. An Intergral Inequlity
    Posted in the Calculus Forum
    Replies: 4
    Last Post: May 2nd 2008, 06:07 PM

Search Tags


/mathhelpforum @mathhelpforum