I don't think I understand what you're saying.

Is it that, in 'multigrade 1' for example, that you can change one of the numbers 1,11,13,33,35,45,3,5,21,25,41 or 45, for a different number and the equality holds?

Say for n=1, the difference between RHS and LHS is 2, so any of the numbers 'are off' by 2, so adding 2 onto any of the numbers 'fixes' it. Is that what you mean? Because if it is, there is no one number you can change in the first equality that will make it true when n=2,3,4 or 5.