Results 1 to 4 of 4

Math Help - Integral with parameters

  1. #1
    Senior Member DeMath's Avatar
    Joined
    Nov 2008
    From
    Moscow
    Posts
    473
    Thanks
    5

    Integral with parameters

    Calculate

    \int\limits_0^{+\infty}e^{-ax^2} \cos(bx^2)\,dx,~~~a>0
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor

    Joined
    May 2008
    Posts
    2,295
    Thanks
    7
    Quote Originally Posted by DeMath View Post
    Calculate

    \int\limits_0^{+\infty}e^{-ax^2} \cos(bx^2)\,dx,~~~a>0
    starting from \int_0^{\infty} e^{-x^2} \ dx = \frac{\sqrt{\pi}}{2} and letting x^2=st, where s is considered to be the variable, we'll get \frac{1}{\sqrt{t}}=\frac{1}{\sqrt{\pi}} \int_0^{\infty} \frac{1}{\sqrt{s}}e^{-st} \ ds. \ \ \ \ \ (1)

    next let J=\int_0^{\infty} \frac{x+a}{\sqrt{x}[(x+a)^2 + b^2]} \ dx, \ \ a >0. let x=z^2 to get J=2\int_0^{\infty} \frac{z^2 + a}{(z^2+a)^2 + b^2} \ dz. let u=z - \frac{\sqrt{a^2+b^2}}{z}, \ v=z+\frac{\sqrt{a^2+b^2}}{z}. then:

    2\int \frac{z^2 + a}{(z^2+a)^2 + b^2} \ dz=\left(1+\frac{a}{\sqrt{a^2+b^2}} \right)J_1 + \left (1 - \frac{a}{\sqrt{a^2+b^2}} \right)J_2, where J_1=\int \frac{du}{u^2 + 2\sqrt{a^2+b^2}+2a} and J_2=\int \frac{dv}{v^2 - (2\sqrt{a^2+b^2} - 2a)}.

    both J_1,J_2 are easy to find. we'll eventually get: J=\pi \sqrt{\frac{\sqrt{a^2+b^2} + a}{2(a^2+b^2)}}. \ \ \ \ \ \ \ \ \ (2)

    now let I=\int_0^{\infty} e^{-ax^2} \cos(bx^2) \ dx, \ \ a>0. put x=\sqrt{t} to get I=\frac{1}{2} \int_0^{\infty} \frac{e^{-at} \cos(bt)}{\sqrt{t}} \ dt = \frac{1}{2\sqrt{\pi}} \int_0^{\infty} e^{-at} \cos(bt) \int_0^{\infty} \frac{1}{\sqrt{s}}e^{-st} \ ds \ dt, by (1).

    changing the order of integration will give us I=\frac{1}{2\sqrt{\pi}} \int_0^{\infty} \frac{1}{\sqrt{s}} \int_0^{\infty} e^{-(s+a)t} \cos(bt) \ dt \ ds=\frac{1}{2\sqrt{\pi}} \int_0^{\infty} \frac{s+a}{\sqrt{s}[(s+a)^2 + b^2]} \ ds, and therefore by (2):

    I=\sqrt{\frac{\pi(\sqrt{a^2+b^2} + a)}{8(a^2+b^2)}}. \ \ \Box

    the final answer makes sense to me. so i can claim that i have survived from all the annoying algebra involved in there.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member
    Joined
    Jan 2009
    Posts
    715
    NonCommAlg :

    Do you have any integrals which involve just a little algebra but our deep thinking ,

    In fact , I cannot survive from the annoying annoying algebra !!
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor

    Joined
    May 2008
    Posts
    2,295
    Thanks
    7
    Quote Originally Posted by simplependulum View Post
    NonCommAlg :

    Do you have any integrals which involve just a little algebra but our deep thinking ,
    i guess i've already posted many of them?
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. improper integral #6 (three parameters)
    Posted in the Math Challenge Problems Forum
    Replies: 1
    Last Post: July 8th 2011, 03:44 PM
  2. integral with two parameters
    Posted in the Calculus Forum
    Replies: 3
    Last Post: July 4th 2011, 06:58 AM
  3. Difficult integral with parameters
    Posted in the Calculus Forum
    Replies: 3
    Last Post: August 3rd 2009, 02:14 AM
  4. Using Parameters
    Posted in the Algebra Forum
    Replies: 5
    Last Post: July 10th 2009, 09:11 PM
  5. Line integral parameters
    Posted in the Calculus Forum
    Replies: 2
    Last Post: April 16th 2008, 01:24 PM

Search Tags


/mathhelpforum @mathhelpforum