Results 1 to 4 of 4

Math Help - About Euler's constant (2)...

  1. #1
    MHF Contributor chisigma's Avatar
    Joined
    Mar 2009
    From
    near Piacenza (Italy)
    Posts
    2,162
    Thanks
    5

    About Euler's constant (2)...

    Given ...

    \gamma(z)= \int_{0}^{\infty} t^{z}\cdot e^{-t}\cdot dt (1)

    ... and the Euler's constant...

    \gamma = \lim_{n \rightarrow \infty} \{\sum_{k=1}^{n} \frac{1}{k} - \ln n \}= .577215664901... (2)

    ... demonstrate from definition (2) that is...

    \frac{1}{\gamma(z)} = e^{\gamma z}\cdot \prod_{n=1}^{\infty} (1+ \frac{z}{n})\cdot e^{-\frac{z}{n}} (3)

    Kind regards

    \chi \sigma
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor Drexel28's Avatar
    Joined
    Nov 2009
    From
    Berkeley, California
    Posts
    4,563
    Thanks
    21
    Quote Originally Posted by chisigma View Post
    Given ...

    \gamma(z)= \int_{0}^{\infty} t^{z}\cdot e^{-t}\cdot dt (1)

    ... and the Euler's constant...

    \gamma = \lim_{n \rightarrow \infty} \{\sum_{k=1}^{n} \frac{1}{k} - \ln n \}= .577215664901... (2)

    ... demonstrate from definition (2) that is...

    \frac{1}{\gamma(z)} = e^{\gamma z}\cdot \prod_{n=1}^{\infty} (1+ \frac{z}{n})\cdot e^{-\frac{z}{n}} (3)

    Kind regards

    \chi \sigma
    Problem: Prove that if \gamma(z)=\int_0^{\infty}t^ze^{-t}dt=\Gamma(z+1) then find \frac{1}{\gamma(z)}

    Proof:

    Lemma: Let \Gamma_\sigma=\frac{\sigma!\sigma^x}{x\cdot(1+x)\c  dots(\sigma+x)} then \Gamma(x)=\lim_{\sigma\to\infty}\Gamma_{\sigma}(x)

    Proof: It can be readily seen that \Gamma_{\sigma}(x+1)=\frac{\sigma!\sigma^{x+1}}{(x  +1)(x+2)\cdots(x+r+1)}=\frac{\sigma\cdot x}{\sigma+x+1}\Gamma_\sigma(x). So that \Gamma(x+1)=\lim_{\sigma\to\infty}\Gamma_{\sigma}(  x+1)=\lim_{\sigma\to\infty}\left\{\frac{\sigma\cdo  t x}{\sigma+x+1}\Gamma_{\sigma}(x)\right\}=x\Gamma(x  ). Furthermore \lim_{\sigma\to\infty}\Gamma_{\sigma}(1)=\lim_{\si  gma\to\infty}\frac{\sigma}{\sigma+1}=1. Thus the functional equation and the boundary condition are satisfied \quad\blacksquare

    Now using this we can get somehwere. If we look closely at \Gamma_{\sigma}(x) we can see that \Gamma_{\sigma}(x)=\frac{\sigma!\sigma^{x}}{(x\cdo  t(1+x)\cdots(\sigma+x)}=\frac{\sigma^x}{\frac{1}{\  sigma!}x\cdot(1+x)\cdots(\sigma+x)} =\frac{\sigma^x}{\frac{1}{1\cdots\sigma}x\cdot(1+x  )\cdots(\sigma+x)}=\frac{\sigma^x}{x\cdot\left(1+\  frac{x}{1}\right)\cdots\left(1+\frac{x}{\sigma}\ri  ght)}. Now using the common fact that \sigma^x=e^{x\ln(\sigma)} yields \Gamma_{\sigma}(x)=\frac{e^{x\ln(\sigma)}}{x\cdot\  left(1+\frac{x}{1}\right)\cdots\left(1+\frac{x}{\s  igma}\right)}. Now using a litle snake-oil we can see that x\cdot\ln(\sigma)=x\left(\ln(\sigma)-H_{\sigma}+H_{\sigma} \right)=x\left(\ln(\sigma)-H_{\sigma}\right)+x\cdot H_{\sigma} where H_\sigma=\sum_{\ell=1}^{\sigma}\frac{1}{\ell}. So then \Gamma_{\sigma}(x)=\frac{e^{x\left(\ln(\sigma)-H_{\sigma}\right)}e^{x\cdot H_\sigma}}{x\cdot\left(1+\frac{x}{1}\right)\cdots\  left(1+\frac{x}{\sigma}\right)} or equivalently \Gamma_{\sigma}(x)=\frac{e^{-x\left(H_\sigma-\ln(\sigma)\right)}}{x}\cdot\prod_{\ell=1}^{\sigma  }\left\{\frac{e^{\frac{x}{\ell}}}{1+\frac{x}{\ell}  }\right\}. So that \frac{1}{\Gamma(x)}=\lim_{\sigma\to\infty}\frac{1}  {\Gamma_{\sigma}(x)}=\lim_{\sigma\to\infty}\left\{  xe^{x\left(H_{\sigma}-\ln(\sigma)\right)}\prod_{\ell=1}^{\sigma}\left\{\  left(1+\frac{x}{\ell}\right)e^{\frac{-x}{\ell}}\right\}\right\} =xe^{\gamma x}\prod_{\ell=1}^{\infty}\left\{\left(1+\frac{x}{\  ell}\right)e^{\frac{-x}{\ell}}\right\}\quad\blacksquare
    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor chisigma's Avatar
    Joined
    Mar 2009
    From
    near Piacenza (Italy)
    Posts
    2,162
    Thanks
    5
    The 'lemma' ...

     \gamma(z)= \lim_{k \rightarrow \infty} \gamma_{k} (z) (1)

    ... where...

    \gamma_{k} (z)= \frac{(k+1)!\cdot k^{z}}{(z+1)\cdot (z+2)\dots (z+k)\cdot (z+k+1)} (2)

    ... must be demonstrated and that can be done with the 'little nice formula' discussed in a previous thread...

    \int_{0}^{\infty} f(t)\cdot e^{-t}\cdot dt = \lim_{k \rightarrow \infty} k\cdot \int_{0}^{1} f(ku)\cdot (1-u)^{k}\cdot du (3)

    If we compute the integral (3) with f(t)=t^{z} applying systematically the integration by parts we obtain...

    \int_{0}^{\infty} t^{z}\cdot e^{-t}\cdot dt = \lim_{k \rightarrow \infty} k^{1+z}\cdot \int_{0}^{1} ku^{z}\cdot (1-u)^{k}\cdot du =

    \lim_{k \rightarrow \infty} \frac{(k+1)!\cdot k^{z}}{(z+1)\cdot (z+2)\dots (z+k)\cdot (z+k+1)}=

    \lim_{k \rightarrow \infty} \frac{k^{z}}{(1+z)\cdot (1+\frac{z}{2})\dots (1+\frac{z}{k})\cdot (1+\frac{z}{k+1})} (4)

    Now if we take into account the identity...

    k^{z}= e^{z \ln k}= e^{z(\ln k -1-\frac{1}{2} -\dots -\frac{1}{k})}\cdot e^{z(1+\frac{1}{2} +\dots +\frac{1}{k})} (5)

    ... from (4) we derive the 'infinite product'...

    \frac{1}{\gamma (z)}= e^{\gamma z}\cdot \prod_{k=1}^{\infty} (1+\frac{z}{k})\cdot e^{-\frac{z}{k}} (6)

    Kind regards

    \chi \sigma
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor Drexel28's Avatar
    Joined
    Nov 2009
    From
    Berkeley, California
    Posts
    4,563
    Thanks
    21
    Quote Originally Posted by chisigma View Post
    The 'lemma' ...

     \gamma(z)= \lim_{k \rightarrow \infty} \gamma_{k} (z) (1)

    ... where...

    \gamma_{k} (z)= \frac{(k+1)!\cdot k^{z}}{(z+1)\cdot (z+2)\dots (z+k)\cdot (z+k+1)} (2)

    ... must be demonstrated and that can be done with the 'little nice formula' discussed in a previous thread...

    \int_{0}^{\infty} f(t)\cdot e^{-t}\cdot dt = \lim_{k \rightarrow \infty} k\cdot \int_{0}^{1} f(ku)\cdot (1-u)^{k}\cdot du (3)

    If we compute the integral (3) with f(t)=t^{z} applying systematically the integration by parts we obtain...

    \int_{0}^{\infty} t^{z}\cdot e^{-t}\cdot dt = \lim_{k \rightarrow \infty} k^{1+z}\cdot \int_{0}^{1} ku^{z}\cdot (1-u)^{k}\cdot du =

    \lim_{k \rightarrow \infty} \frac{(k+1)!\cdot k^{z}}{(z+1)\cdot (z+2)\dots (z+k)\cdot (z+k+1)}=

    \lim_{k \rightarrow \infty} \frac{k^{z}}{(1+z)\cdot (1+\frac{z}{2})\dots (1+\frac{z}{k})\cdot (1+\frac{z}{k+1})} (4)

    Now if we take into account the identity...

    k^{z}= e^{z \ln k}= e^{z(\ln k -1-\frac{1}{2} -\dots -\frac{1}{k})}\cdot e^{z(1+\frac{1}{2} +\dots +\frac{1}{k})} (5)

    ... from (4) we derive the 'infinite product'...

    \frac{1}{\gamma (z)}= e^{\gamma z}\cdot \prod_{k=1}^{\infty} (1+\frac{z}{k})\cdot e^{-\frac{z}{k}} (6)

    Kind regards

    \chi \sigma
    Why must it be 'demonstrated'? I in fact showed that it is equivalent.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Euler's constant.
    Posted in the Differential Geometry Forum
    Replies: 2
    Last Post: May 23rd 2011, 06:41 AM
  2. About Euler's constant (4)...
    Posted in the Math Challenge Problems Forum
    Replies: 4
    Last Post: November 16th 2009, 08:37 AM
  3. About Euler's constant (3)...
    Posted in the Math Challenge Problems Forum
    Replies: 1
    Last Post: November 11th 2009, 08:02 AM
  4. About Euler's constant (1)...
    Posted in the Math Challenge Problems Forum
    Replies: 13
    Last Post: November 5th 2009, 12:10 PM
  5. Euler–Mascheroni constant
    Posted in the Calculus Forum
    Replies: 3
    Last Post: June 14th 2009, 04:39 AM

Search Tags


/mathhelpforum @mathhelpforum