Solve: .$\displaystyle \log_2\left[\log_3\left(\log_4x\right)\right] \:=\:\log_3\left[\log_4\left(\log_2y\right)\right] \:=\:\log_4\left[\log_2\left(\log_3z\right)\right] \:=\:0$ . . (Not really difficult, but I like its appearance.)
Follow Math Help Forum on Facebook and Google+
Originally Posted by Soroban Solve: .$\displaystyle \log_2\left[\log_3\left(\log_4x\right)\right] \:=\:\log_3\left[\log_4\left(\log_2y\right)\right] \:=\:\log_4\left[\log_2\left(\log_3z\right)\right] \:=\:0$ . . (Not really difficult, but I like its appearance.) Hello, Soroban, the contents in these brackets [..] must be 1 allways. Then you can solve these reduced equations. I've got: x = 64; y = 16; z = 9 EB
View Tag Cloud