1. ## Subtext in latex

How do I post in latex the subtext under some formulas.
For example
http://www.m-hikari.com/ija/forth/dr...JA5-8-2009.pdf
Go to page 233 of this document and there are formulas with
"max" for example, and under the "max" there is subtext.
Just look at the $\displaystyle ||A||_{1\infty}$ norm and you see that there are conditions under the "max" to the effect of $\displaystyle (i,j)|\in......$.
How do I put this under the $\displaystyle max$?

regards
Bucephalus

2. Originally Posted by Bucephalus
How do I post in latex the subtext under some formulas.
For example
http://www.m-hikari.com/ija/forth/dr...JA5-8-2009.pdf
Go to page 233 of this document and there are formulas with
"max" for example, and under the "max" there is subtext.
Just look at the $\displaystyle ||A||_{1\infty}$ norm and you see that there are conditions under the "max" to the effect of $\displaystyle (i,j)|\in......$.
How do I put this under the $\displaystyle max$?

regards
Bucephalus
$$\max\limits_{(i,j)\in\dots}[tex] generates \displaystyle \max\limits_{(i,j)|\in\dots}. Note that \limits is also useful in putting subscripts under double and triple integrals! i.e. \displaystyle \iint\limits_R f\!\left(x,y\right)\,dA or \displaystyle \iiint\limits_G f\!\left(x,y,z\right)\,dV 3. Originally Posted by Bucephalus How do I post in latex the subtext under some formulas. For example http://www.m-hikari.com/ija/forth/dr...JA5-8-2009.pdf Go to page 233 of this document and there are formulas with "max" for example, and under the "max" there is subtext. Just look at the \displaystyle ||A||_{1\infty} norm and you see that there are conditions under the "max" to the effect of \displaystyle (i,j)|\in....... How do I put this under the \displaystyle max? regards Bucephalus \displaystyle \max_{j=1 ....} = \max_{j=1 ....} 4. ## Here is what I have so far.... Can I improve on this? \displaystyle ||A||_{(1,\infty)}=^{max}_{(i,j)|\in\{1,.....,m\}\ times\{1,.....,n\}}|a_{ij}| Thanks 5. Originally Posted by Bucephalus Can I improve on this? \displaystyle ||A||_{(1,\infty)}=^{max}_{(i,j)|\in\{1,.....,m\}\ times\{1,.....,n\}}|a_{ij}| Thanks [tex]||A||_{(1,\infty)}=\max\limits_{(i,j)|\in\{1,\dots ,m\}\times\{1,\dots,n\}}|a_{ij}|$$

OR

$$||A||_{(1,\infty)}=\max_{(i,j)|\in\{1,\dots,m\}\ti mes\{1,\dots,n\}}|a_{ij}|$$ gives:

$\displaystyle ||A||_{(1,\infty)}=\max\limits_{(i,j)|\in\{1,\dots ,m\}\times\{1,\dots,n\}}|a_{ij}|$ or $\displaystyle ||A||_{(1,\infty)}=\max_{(i,j)|\in\{1,\dots,m\}\ti mes\{1,\dots,n\}}|a_{ij}|$ respectively.

6. ## that's awesome

Originally Posted by Chris L T521
$$\max\limits_{(i,j)\in\dots}[tex] generates \displaystyle \max\limits_{(i,j)|\in\dots}. Note that \limits is also useful in putting subscripts under double and triple integrals! i.e. \displaystyle \iint\limits_R f\!\left(x,y\right)\,dA or \displaystyle \iiint\limits_G f\!\left(x,y,z\right)\,dV That's exactly what I'm looking for. Thanks for your help, both of you. Bucephalus 7. ## I mean this is what I'm looking for and you showed me. Originally Posted by Chris L T521 [tex]||A||_{(1,\infty)}=\max\limits_{(i,j)|\in\{1,\dots ,m\}\times\{1,\dots,n\}}|a_{ij}|$$

OR

$$||A||_{(1,\infty)}=\max_{(i,j)|\in\{1,\dots,m\}\ti mes\{1,\dots,n\}}|a_{ij}|$$ gives:

$\displaystyle ||A||_{(1,\infty)}=\max\limits_{(i,j)|\in\{1,\dots ,m\}\times\{1,\dots,n\}}|a_{ij}|$ or $\displaystyle ||A||_{(1,\infty)}=\max_{(i,j)|\in\{1,\dots,m\}\ti mes\{1,\dots,n\}}|a_{ij}|$ respectively.

once again, thanks Chris.

8. @ Bucephalus : there's also this one :

$$\underset{ (i,j)|\in\{1,\dots,m\}\times\{1,\dots,n\} }{\max}|a_{ij}|$$

$\displaystyle \underset{ (i,j)|\in\{1,\dots,m\}\times\{1,\dots,n\} }{\max}|a_{ij}|$