$\displaystyle \sqrt{x-2} \cdot \sqrt{x-5} = (x-2)^\frac{1}{2} \cdot (x-5)^\frac{1}{2} $
$\displaystyle a^{b} \cdot b^{a} = ab^{a+b}$
$\displaystyle (x-2)^\frac{1}{2} \cdot (x-5)^\frac{1}{2}$
$\displaystyle (x^2-7x-10)^\frac{1}{2} + ^\frac{1}{2}$
$\displaystyle \sqrt{x-2} \cdot \sqrt{x-5} = (x-2)^\frac{1}{2} \cdot (x-5)^\frac{1}{2} $
$\displaystyle a^{b} \cdot b^{a} = ab^{a+b}$
$\displaystyle (x-2)^\frac{1}{2} \cdot (x-5)^\frac{1}{2}$
$\displaystyle (x^2-7x-10)^\frac{1}{2} + ^\frac{1}{2}$