$\displaystyle \sqrt{x-2} \cdot \sqrt{x-5} = (x-2)^\frac{1}{2} \cdot (x-5)^\frac{1}{2} $

$\displaystyle a^{b} \cdot b^{a} = ab^{a+b}$

$\displaystyle (x-2)^\frac{1}{2} \cdot (x-5)^\frac{1}{2}$

$\displaystyle (x^2-7x-10)^\frac{1}{2} + ^\frac{1}{2}$

Printable View

- Jul 30th 2008, 05:21 AMJonesLaTeX Testing
$\displaystyle \sqrt{x-2} \cdot \sqrt{x-5} = (x-2)^\frac{1}{2} \cdot (x-5)^\frac{1}{2} $

$\displaystyle a^{b} \cdot b^{a} = ab^{a+b}$

$\displaystyle (x-2)^\frac{1}{2} \cdot (x-5)^\frac{1}{2}$

$\displaystyle (x^2-7x-10)^\frac{1}{2} + ^\frac{1}{2}$ - Jul 30th 2008, 05:30 AMJones
hmm, how do i add fractions together in a proper way?

- Jul 30th 2008, 05:43 AMflyingsquirrel
- Jul 30th 2008, 05:45 AMJones
- Jul 30th 2008, 05:58 AMflyingsquirrel
- Jul 30th 2008, 06:02 AMJones
Hi,

No, i want to add 1/2 + 1/2 in raised form. Like X^1/2 + 1/2 - Jul 30th 2008, 06:14 AMflyingsquirrel
- Jul 30th 2008, 06:15 AMJones
Yes, thank you :)

- Jul 30th 2008, 06:33 AMarbolis
Also useful maybe : $\displaystyle \sqrt[4]{x^3}=x^{\frac{3}{4}}$.

- Jul 30th 2008, 10:49 AMdashreeve
testing $\displaystyle \alpha\beta\frac{2x^2-4}{\sqrt{a^2-bx^2}}$