# Thread: Test

1. ## Test

F(u) = { u \cdot d - |u||d|\cos(\Theta) }

F(u) = [math] u \cdot d - |u||d|\cos(\Theta) [\math]

F(u) = u \cdot d - |u||d|\cos(\Theta)

\frac{\pi^2}{6}

[math]F(u)=|u||d|\cos{\theta}[\math]

[math]x^2\sqrt{x}[\math]

??????????

$\displaystyle F(u) = u \cdot d - |u||d|\cos(\Theta)$

$\displaystyle N = \left( d_1 - \frac{u_1|d|\cos(\Theta)}{|u|}i , d_2 - \frac{u_2|d|\cos(\Theta)}{|u|}j , d_3 - \frac{u_3|d|\cos(\Theta)}{|u|}k \right)$

2. ## Re: Test

Originally Posted by LChenier
F(u) = { u \cdot d - |u||d|\cos(\Theta) }
F(u) = [math] u \cdot d - |u||d|\cos(\Theta) [\math]
F(u) = u \cdot d - |u||d|\cos(\Theta)
\frac{\pi^2}{6} ??????????
[TEX]F(u) = \{ u \cdot d - |u||d|\cos(\Theta) \} [/TEX] gives $\displaystyle F(u) = \{ u \cdot d - |u||d|\cos(\Theta) \}$

[TEX]u \cdot d - |u||d|\cos(\Theta) [/TEX] gives $\displaystyle u \cdot d - |u||d|\cos(\Theta)$

[TEX]F(u) = u \cdot d - |u||d|\cos(\Theta) [/TEX] gives $\displaystyle F(u) = u \cdot d - |u||d|\cos(\Theta)$

[TEX]\frac{\pi^2}{6} [/TEX] gives $\displaystyle \frac{\pi^2}{6}$.

On the tool bar the $\boxed{\Sigma}$ tab inserts the [TEX] [/TEX] wrap.

Thanks