1. Test

F(u) = { u \cdot d - |u||d|\cos(\Theta) }

F(u) = [tex] u \cdot d - |u||d|\cos(\Theta) [\math]

F(u) = u \cdot d - |u||d|\cos(\Theta)

\frac{\pi^2}{6}

[tex]F(u)=|u||d|\cos{\theta}[\math]

[tex]x^2\sqrt{x}[\math]

??????????

$F(u) = u \cdot d - |u||d|\cos(\Theta)$

$N = \left( d_1 - \frac{u_1|d|\cos(\Theta)}{|u|}i , d_2 - \frac{u_2|d|\cos(\Theta)}{|u|}j , d_3 - \frac{u_3|d|\cos(\Theta)}{|u|}k \right)$

2. Re: Test

Originally Posted by LChenier
F(u) = { u \cdot d - |u||d|\cos(\Theta) }
F(u) = [tex] u \cdot d - |u||d|\cos(\Theta) [\math]
F(u) = u \cdot d - |u||d|\cos(\Theta)
\frac{\pi^2}{6} ??????????
[TEX]F(u) = \{ u \cdot d - |u||d|\cos(\Theta) \} [/TEX] gives $F(u) = \{ u \cdot d - |u||d|\cos(\Theta) \}$

[TEX]u \cdot d - |u||d|\cos(\Theta) [/TEX] gives $u \cdot d - |u||d|\cos(\Theta)$

[TEX]F(u) = u \cdot d - |u||d|\cos(\Theta) [/TEX] gives $F(u) = u \cdot d - |u||d|\cos(\Theta)$

[TEX]\frac{\pi^2}{6} [/TEX] gives $\frac{\pi^2}{6}$.

On the tool bar the $\boxed{\Sigma}$ tab inserts the [TEX] [/TEX] wrap.

Thanks